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STRUCTURAL DYNAMICS

QUALIFICATION BY ANALYSIS OF IUS PLUME DEFLECTORS

R. F. Hain
Boeing Aerospace Company

Seattle, Washington

This paper describes the method for qualification by analysis of

Inertial Upper Stage (IUS) plume deflectors. The qualification -

by analysis is based on a finite element model that is verified by

comparison with qualification test data from another configuration

of the plume deflector.

INTRODUCTION results were compared to the test results of the STS

Plume deflectors were added to the IUS to protect model qualification test responses to verify the

the structure from the Reaction Control System validity of the model. The comparison demonstra-

(RCS) rocket engine plume. Since the deflectors ted thatthe qualification by analysis could be

were added late in the program, it was necessary to accomplished in a satisfactory manner.
It was vital that the comparison of model

qualify the design on an accelerated schedule. The predictions to test data show thatthe model was

deflectors were qualified for the vibroacousticenvromen b a omintio o tet ndanalysis, acting in the proper manner to consider it a valid

environment by a combination of test and amodel that could be used to qualify the T-34D
This paper describes the vibroacoustic test and the

configuration plume deflectors and the loads
finite element analysis used to qualify the

produced by them on the support stringers. Two

configurations in ieu of tecriteria were used to determine how well the

There are five plume deflectors per IUS vehicle (one model would make these predictions: (1) it must

under each pair of rocket engine nozzles located at predict the fundamental resorant frequency of the

tdeflectof within +IS5%; and, (2) it must predict
0, 90,180 and 270 degrees around the vehicle, with

the final deflector covering the batteries located or acceleration response levels that would result in

conservative displacements at all locations when
compared to measured response leves. When

plume deflectors, one for the T-34DOIUS configura-
o efor the STSUS configuration. The these two conditions are met, then the stiffness is

correct, defanctios are conservatf te and the forces 
STSJIUS configuration was qualified by test while corcdfetosaecosra eadtefre

the T-34D/IUS configuration was qualified by at the suppor points are conservative.

analysis. A finite element (NASTRAN) model was

built for the T-34D configuration and the acoustic MODE- DESCRIPTION

noise environment applied using the frequency The model of the deflector at the ]US 90 degree

response capability of NASTRAN. The T-34D model location is presented in Figure 1 with the coordi-



nate system identified. (Models were mede for the applied to the model using the frequency response

deflector at 270 degrees as well as for the one capabilities of NASTRAN. The loading was applied

covering the batteries.) Grid points are also from 20 Hz to 2000 Hz. The PSD values were e
identified. Views from the x-, y- and z-axes are reduced by 30% below 150 Hz to account for the

presented in Figures 2 through 4. The piume effect of simultaneous loading of both sides of the X

deflector is attached to the stringers of the shield.

Equipment Support Section (ESS) of the IUS at the

ends of the support structure shown schematically The model predicted the first mode resonant

in Figure 5. The model was made up of NASTRAN frequencies at the measurement points within the

plate elements (CQUAD4, CQUAD8, and CTRIA3) required 15% of test results except at one point on

with bars to represent the supports. Instrumenta- the edge of the deflector. The exception is on a

tion locations are also shown in Figure 5. portion of the deflector that is bent at a large angle

The plume deflectors are made of Rene 51 steel to the rest of the deflector. The flexibility at this

with Young's Modulus equal to (29 x 106 psi = point is influenced by the inelastic behavior of the

1.31 x 105 MPA). Structural damping was used in bend line. The NASTRAN frequency response

the model. The damping forces are dependent on solution assumes that the interaction of the plate

the frequency because NASTRAN calculates elements used in the model is completely elastic.

damping forces as a ratio of the stiffness matrix. The inelastic response at this point results in a

This frequency dependence of the damping forces stiffer structure. However, the predicted

results in conservative loads and displacements. A displacements were conservative at all points.

structural damping value of 0.02 (Q = 50) was used

for the analysis. A comparison of the first resonant response
frequencies measured during test with the

TESTAND ANALYSIS RESULTS NASTRAN predictions is presented in Table 1. A

The plume deflectors were installed on an US comparison of 3u peak displacements is presented iN.

vehide used for structural test (designated in Table 2. The frequency predictions are within

Pathfinder Test Vehicle C (PTV-C)). They were the 15% tolerance of the test values at all locations

then subjected to the 145 dB acoustic excitation except for accelerometer location 204R (see Figure

shown in Figure 6. This was followed by an acoustic 5). This exception is due to the inelastic behavior

excitation of 151 dB for qualification. The 145dB alreadydescribed. The displacement predictions

acoustic excitation was then repeated without the from NASTRAN were all greater than the test

deflectors attached to the test vehicle. Compar- results at all locations.

isons of test data from the two 145 dB tests were

made to determine the effects of the plume

deflectors. The comparison showed some slight .NNCLUNIONS

increases in vibration levels below 400 Hz and

reductions above 400 Hz. These variations are The model verification showed that the support

ascribed tc deflector resonant frequencies and forces and plume deflector structural deflections
could be conservatively predicted using a NASTRAN

mass damping effects of the deflectors respectively, fiite mntoel Tresot msfinite elemnent model. The resonant modes

Model predictions were made at the same locations affected by inelastic stiffness, such as along a

folded plate bend line, can not be predicted by athat were instrumented dluring the acoustic noise

test Mode shapes and frequencies were checked NASTRAN finite element model because NASTRAN

treats the model a; completely elastic. Testing isfirst and the model adjusted to agree with test,
recommended if information is needed on this

data. A 145 db acoustic pressure loading was then commnd
condition.

2
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TABLE 1

COMPARISON OF FIRST RESONANT RESPONSE FREQUENCIES

{ FIRST RESONANT RESPONSE FREQ.
NASRAN PTV-C ACC _____ __________

GRID POINT LOCATIONj AI DNASTRAN ?1IV-C i %DIFFERENCE

31 201R 104 _ _120 14.3%

4 202R 115 120 4.4%

4 219R 115 120 4.4%

2 203R 105 110 4.8%

1 204R 96 70 27.1%

1 NOTE: Frequency is accurate to within only _ 5Hz since PSD analysis was conducted
with a 10 Hz bandwidth at 10 Hz increments.

TABLE 2

COMPARISON OF 3 SIGMA PEAK DISPLACEMENTS

3 SIGMA PEAK DISPLACEMENT -Chr (INCHES)

NASTRAN PTV-C ACC
GRID POIN LOCATION r

PTV-C ,"
NASTRAN ACOUSTNC TESt

31 201R 0.145 (0.057) 0.018 (0.046)

4 202R 0.216 (0.085) 0.016 (0.041)

4 { 219R 0.216 (0.085) 0.018 (0.046)

2 203R 0.438 (0.19) 0.017 (0.043)

1 204R 0.838 (0.33) 0.03 (0.076)

%

3 I



-'W 3- *,,T

-I1

ERp

A4



Figure 2 GRID POINT LOCATIONS

AXES4

AXES

XV



Figure 3 GRID POINT LOCATIONS
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ANALYSIS OF REINFORCED CONCRETE STRUCTURES UNDER THE EPFICTS
OF LOCALIZED DETONATIONS

T. Krauthammer
Department of Civil and Mineral Engineering,

University of Minnesota

Minneapolis, Minnesota

A modified analytical method is proposed for studying the

behavior of reinforced concrete structural elements under the
effects of localized detonations. In this approach the combined
effects of flpxur-, shear, and axial forces are considered for 1W
the developmnc of accurate resistance functions which representM
the structural response. These functions are then introduced into

single-degree-of-freedom computations by which the dynamic re-
sponse is assessed. The computaticral procedure employs explicit

relationships between structural mechanisms for evaluating
structural element behavior at any stage of existence. Based on

this approach it was possible to study the contributions of

longitudinal and transverse reinforcement, material properties,
support and loading conditions, and to correLate these parameters A-

with observed behavior.

INTRODUCTION There are significant difficulties in
the derivation of accurate and well under-

One of the most interesting and diffi- stood loading functions which can represent

cult area in structural engineering is the the effects associated with conventional

design and assessment of structures for detonations. This is a result of the fact
resisting detonation effects. This field of that the environment created by a detonation

research has been developing quite rapidly is so severe that it is very difficult to
since the end of WWII, and significant gains measare the effects in the zone close to the

were made in understanding the relationships source Nevertheless, important information I ,

between the various physical parameters of is available from which researchers can

the problem and t!,e observed structural obtain good estimates of such effects, as
response. Also, it is important to dis- discussed in 1i. Also, the work of other
tinguish between effects that could be investigators on detonation effects provided

associated with conventional detonations and important contributions in this field [3-7],
those which may result from nuclear and engineers can derive reliable load-time
explosions, as discussed in a previovs histories for detonations in air, soil. and
publication [11. The present paler is aimed liquids. Once the general pressure-time
to present a direct approach tor the analyses relationship is obtained (it is important to

of reinforced concretL structural elements note that such relationships may include th.-
under the effezts of localized loads, such as effects of fragment impact, etc. that would
those that could be associated with typical be translated into equivaient pressure), theI
conventional explosives. The general approach analyst must transform it to the structure
for simplified analyses of such structures under consideration, and include the spatial L
was presented and discussed previously [I. nature of the environment. This final step in
and 2], and therefore, no extensive discus- the derivation of the loading function is
sions on these issues will be presented here. also not simple, ond one needs to resort to 0.
Nevertieless, several important items must bL simplified as.umptions, for example as
studied in order for preparing tha requird proposed in [1. Similarly, the analyst must

ingredients for the numerical aperoach, such derive reliable and accurate structural
as the development of re.iable structural models which would be included in the
resistance functions, incorporating accurate analysia. Following the approach proposed in

load - time histories, and providing rational [1, and 2], where it was shown that it was

definitions for structural performance. pnssible to simulate complicated structu,'al

N -W



systems by single-degree-of-freedom (SDOF) 1. Strains have a linear distribution over
models, it was decided to extend that method the beam cross section (plane sections
for the analysis of reinforced concrete frame 

before bending remain plane after

structures. The main issue at this point was bending).
the derivation of structural resistance
functions that would be accurate, but simple 2. Tensile strength of concrete below the
for incorporation into SDOF analyses. neutral axis is ignored, and

Analysis of reinforced concrete 3. The stress-strain relationships for steel
structural elements would primarily depend on and concrete are known.
not only the models that describe the
u terial behavior, but also on assumptions The analytical procedure that follows is
w .th regards to structural behavior and the quite straightforward. For an arbitrary
numerical procedure which is used to perform linear distribution of strain, a location of
the analysis. The derivation of structural the neutral axis is assumed and the com-
behavior models for reinforced concrete slabs pression zone of the cross section is divided
was discussed extensively in [1, and 2], and into a number of layers parallel to the
therefore, the main emphasis of this paper neutral axis, as shown in Figure 1. Using the
will be on the development of similar first assumption with specific stress-strain
relationships for beams and columns. Various relationships for steel, unconfined (e.g.
material models for plain concrete, confined cover), and confined (e.g. core) concrete,
concrete, and steel reinforcement have been the stresses and forces can be determined for
proposed in the literature [10-14] that can all layers of concrete and longitudinal
be employed for this purpose, and evaluation reinforcement. It is required that the
of experimental results reported in the computed forces in the cross-section satisfy
literature indicated that several of these equilibrium, as defined by Equation (I).
material models provided very good results.
In addition, new formulations are proposed to
account for the direct influence of trans-
verse reinforcement on the ultimate strength
of the structural member, combined with the
effect of axial compressive f-rce on the
load-deformation behavior of the structural
element and are incorporated into the present , \
approach. The numerical model is subsequently W

applied to a number of cases that have been
studied experimentally [15-17) in order for : a 1 '
obtaining valuable comparisors between A
analytical and experimental data.

The present study is an extension of a
previous effort in which a similar approach
was adopted for structural behavior in the
static domain [I]; however, several signifi-
cant improved procedures, and behavioral
models were incorporated in the present K Coef nod oncre*
approach which resulted in a considerably Unt of in CO~raet
more fundamental treatment of reinforced
concrete analysis. The ultimate goal of the 1-CoM rowifwt rinforcenf
present study Is to develop a straightforward 2-Tensile reinforcomnwt
procedure for the analysis of reinforced 3-Hoop
concrete structural systems under severe
dynamic localized loads, and the present FIGURE I BEUM CROSS-SECTION
paper is aimed to address the development of
structural resistance relationships (i.e.,
load-deformation) that would be employed for
performing dynamic analyses. XT +P 1 1  - X(C. + C5)i  (1)

FLEXURAL RESISTANCE RELATIONSHIPS in which IT, is the sum of all tensile forces

The procedure proposed for deriving in the cross-section, Pu.. is the ex-
flexural resistance relationships of ternally applied thrust (this term exists in

reinforced concrete beam-type structural cases that a known compressive force acts on

elements is siruilar to those previously the cross-section), J(C.), is the sum of all

presented in [10-12], and is based on the compressive forces in the concrete, and
following assumptions: X(C.) is the sum of all compressive forces

in the steel.
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If equilibrium is not satisfied, an to adopt and to modify the approach proposed
iterative procedure will begin for a new in [18) for reflecting the current assump-
location of the neutral axis until equi- tions, as follows.
librium is obtained, and then moment and )
curvature are computed. The entire procedure b p
is repeated for other strain distributions r%- 0.004 + 0.02 (-) + 0.27 (-) pc
until the ultimate capacity is reached. As L, 0 p
mentioned earlier, such a numerical procedure
requires an accurate description of the (2)
material models. The stress strain relation-
ship for confined concrete in the compression in which L. is the distance from the critical
zone that was used in this study was pre- section to the point of cortraflexure, b is
viously employed in [113 for representing the the cross-section width, a!,d p, is the ratio
behavior of confined concrete in beams, or of the volume of confining reinforcement $
beam-columns while the stress-strain rela- (transverse and compressive) to the volume of
tionship for the unconfined concrete (the confined concrete. The value 0.004 replaced
concrete cover) is similar to the idealized the original asaumption of 0.003. and the
stress strain curve for concrete under constant 0.2

7 (p/p') replaced a previous value

uniaxial compression as proposed in [133. The of 0.2, where p and p'are the tensile and the
stresses in tie layers of concrete cover will compressive reinforcement ratios. respec-
be computed using the unconfined stress- tively. Also, it was assumed that if the
strain relatizraship while the stresses for strain at the mid-height of the confined
the confiaied concrete layers are computed concrete zone of the cross section exceeded
with the confined stress-strain model. The the ultimate strain of confined concrete,
material behavior of the longitudinal tensile before the tensile reinforcement reached its
and compressive reinforcement is identical to rupture strain, a compression failure in
that discussed by Park and Paulay [103, and concrete would take place, and the compv-
later used in [113. ration was terminated. Otherwise, if the

tenzile reinforcement reached its ultimate
The computation of a complete moment strain, a tension controlled failure was

curvature diagram requires a clear definition assumed.
of material failure. In the present study the
structural response was allowed to develop Flexural analysis of heavily reinforced

beyond the yielding of reinforcement since (1-2: PI~b >0.5) and overreinforced (P~ >1.)
the behavior of the structures under beams of Ref. [161 that were examined using
consideration included the contribution of the present analytical model indicated that
post-yield effects. As a result it was the neutral axis continued to move deeper
required to employ complete stress-strain into the section and eventually exceeded the 0
relationships for the materials describing effective depth of the section This
the behavior up to the material failure. For situation always occurred during softening
lightly to moderately underreinforced beams after the peak moment was reached, and since
(i.e., beams for which the tensile rein- no experimental information for the softening
forcement ratio is less than half the part was available (i.e., the reported
balanced ratio), failure would be reached experimental data were only up to the peak
when the tensile reinforcement reaches its resisting moment), the peak moment was chosen
fracture strain, or when concrete reaches its as the ultimate flexural resistance on the
ultimate compressive strain, whichever occur moment-curvature diagram for these beams.
first. A distinction between overreinforced
and underreinforced beams would further EFFECT OF SHEAR ON FLEXURAL RESISTANCE
require a definition of the balanced amount
of reinforcement within the flexural model. Despite the tremendous amount of re-
In the present study pb was defined as the search that has been devoted to the influence
amount of longitudinal tensile reinforcement of shear on the performance of reinforced
necessary for obtaining equilibrium such that concrete beams, there remain considerable
the strain of the tensile steel has just uncertainties about the nature of the
reached yield while the concrete strain at corresponding feilure mechanism and the

* the extreme compression fiber is at 0.004. estimation of the failure load. Generally, it
is well understood that the so called "shear

The ultimate compressive strain of failure* in reinforced concrete beams i, a
concrete, c_ , was defined here as the result of flexure, shear, and axial force NI

strain beyond which the unconfined concrete acting simultaneously. A failure of this kind
crushes (for unconfined concrete of moderate is usually brittle and it occurs before the
strength, fl, between 3000 to 5000 psi) c,, structure reaches its ultimate flexural
was taken as 0.004, as discussed in [111. For capacity. In order to understand the problem
the concrete confined by rectangular hoops, associated with the influence of shear on the
c,. can be defined according to previous flexural behavior of reinforced concrete
studies by Corley [17], and by Mattock [183 beams, the effect of shear must be first
that provided lower bounds for their experi- examined for beams without web reinforcement
mental data base. Accordingly, it was decided and then extended to beams with shear



reinforcement. 1.88% < p < 2.80%

Beams without Web Reinforcement H

- 0.6 (3.c)Experimental results (19,20) indcated

that when all other parameters were kept

constnt. ie; riotesult mt momeJ nctd
withsainfe ratio of the ultimate moment In addition, by assuming a straight line

influer.ce to the ultimate moment relationship between the moment Lapacity
without the shear influence (H./MfL) for ratio and the a/d of the beam en both sides
simply supported beams clearly is a function of the minimum moment capacity line (Figure
of po and a/d, and this ratio was defined in 2), the following expressions which define
[11) as the shear reduction factor (SRF). the moment capacity ratio for a specific a/d
Those results indicated that the flexural was proposed [11]:
capacity of reinforced concrete beams with
certain combinations of p and a/d in the For deep beams (I. < a/d < 2.5) O

ranges of 0.65 s p : 2.8% and 1 < a/d< 7
did not fully develop. Also. it was observed HU (a/d) - P1
in [11] that regardless of the amount of (-) - 1.0 + [(-). - 1.01
tensile reinforcement, the minimum value of IS Mr (a/d)* - P1
that ratio, (M,/M,,) , occurred in the range
of 2 < a/d < 3, and there was no shear (4.a)
reduction for beams with 

a/d larger than

seven or smaller than one, as shown in Figure For slender beams (2.5 < a/d < 7.)
2. Moreover, the minimum moment capacity line

was assumed to comprise of three linear H K. (a/d) - P3
segments parallel to the o axis. as shnun (--) - 1.0 + [(--)a - 1.0]

below. Hz1  M 1  (a/d)* - P3

(4.b)

MI --- -, .. rctnt where (a/d)* is the span to depth ratio
corresponding to the minimum moment capacity
line, point P2 in Figure 2, Pi is the shear
span to the effective depth ratio below whi.h

and similarly P 3 is the a/d beyond which
- - there is no reduction in the meant capacity,

there is no loss of flexural capacity (in
1I) it was assumed to be constant at a/d-7).

-- 'Here however, from additional numerical
evaluation of experimental results in (11].

P. may be approximated by the following
expressions:

P 1.88% :

P3 - 7 (5.a)

'3 0.65% s p s 1.88%

FIGURE 2 MMENT - SHEAR INTERACTION P3 " + 3 6 5 . 9 ( 0 - 0.0188) (5.b)
For overreinforced sections, shear would

not have the same influence on reducing the
moment capacity as for underreinforced cases.
In an overreinforced beam, the concrete

0 < p < 0.
65 % : compressive zone is considerably larger at

ultimate, causing a more effective aggregate

M. interlocking mechanism, and as result the

), - 1.0 (3.a) inclined flexure shear cracks do not
propagate as extensively as they would in an
underreinforced beam. This phenomenon was

0.65% < p < 1.88% : accounted for in this study by introducing
the overreinforcing factor (ORF) defined as

M, follows:
- 1.0- 36.6 (p - 0.0065) (3.h)

MNt
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P 5 Pb : ORF- 1. (6.a) II. Slender Beams (2.5 < a/d ;7)_ The

experimental data for the 27 rectangular

and slender beams used for the derivation of the w

following formulation were gathered from 4

P > Pb ORF- P/Pb (6.b) previous studies [14,16,22, and 23]. These

beams were also loaded by either a single

where p and Pb were defined earlier. The ORF concentrated load at their midspan or tvo

is subsequently applied to the minimum moment concentrated loads atrter span points.

capacity ratio, as obtained from Eqs. (3). in When the variable p!)a/d for these beams was

the following manner. plotted against the angle of the diagonal
compression strut at ultimate, the following

M. H, linear relationship was obtained.
(-"d). _ (- ). * ORF :s 1 (7)
M - () * 1 - 3.06(p" a/ ) + 7.22 (10)

Beams with Web Reinforcement Again, the scatter between the 27 points

about the best fitted line was small,

The interaction between web rein- reflecting in a correlation coefficient of

forcement and the flexural capacity of a beam approximately 0.99.

has been the subject of various analytical

models, as discussed in [10]. Perhaps the 111. T beams: Here the data was obtained from

most accepted analytical method for Refs. [22, and 24] in which tests on 29 T

predicting the shear capacity of a reinforced beams loaded by a single force at midspand

concrete beam is the truss mechanism analogy, were rep -ted. For these cases the following

The truss analogy is based on the assumption relationship was derived.

that stirrups act like tension members, and

the concrete compressive struts act like a - 1.63 (p Ja/d ) + 9.55 (11)

diagonal compression members in the web of

the analogous truss with an angle a between In this case the correlation coefficient was

the concrete compressive strut and the 0.98.

positive longitudinal axis of the beam, as

defined in [10]. Based on this information it Eqs. (9-11) represent the influence of

was decided here to employ a reasonable material properties and the amount of shear

amount of experimental data for developing reinforcement on the angle of the diagonal

relationships that would represent the compression strut at failure. This relation-

effects of beam properties, including shear ship is illustrated in Figure 2 by shifting

reinforcement, on the angle a. Three such the minimum point P2 upward to a new point

relationships were obtained, as follows. P'. and according to the following

expression:
I. Deep beams (I -< a/d s 2.5): The model

that is proposed for deep beams is based on HU M. MU

experimental results from a study by Clark (-) - (-), + [1.0 - (-) ] * tan a

[211, in which the beams were loaded by a MHi Hf1  Hfi

single concentrated load at their midspan or (12)

by two single concentrated loads at their

quarter span points. A parameter p" is where, (M.,/MHt)" is the new value of the

defined as follows: minimum moment capacity due to the influence

of transverse reinforcement and it replp.es

the old value of (M./M.1 ). in Eqs. (4). It is

p (8) important to note that the relationship

proposed in [111 was based on the definition

of the shear crack inclination, while here it

where f'© is the compressive strength of is based on the truss analogy. Also, in [111

concrete and p", f7" were previously the parameter cot a was employed to represent

defined herein. When the product o the the shear reinforcement contribution. Once QL 
'
*'

variables p* and a/d were plotted against the Eqs. (4) are modified for the effect of web

angle of the compression strut for 27 beams, reinforcement, it is possible to represent

the following linear relationship was the influence of shear on the flexural

derived, capacity by the SRF. It is also proposed here

to divide all computed curvatures, from zero

a - 2.72 p" (a/d) + 4.08 (9) to the ultimate, by the SRF, and thus. to

compute the modified moment-curvature (H - #)

The scatter between data for the 27 points on diagram that includes shear effects on

the plot is not large, resulting in a strength and deformation.

statistical correlation coefficient of 0.91.

If an external compressive force is

applied to the structural member (such as

from pre-, or post-tensioning), it is known

13
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(10] that as long as the magnitude of the A central parameter for dynamic SDOF
axial compressive load is below the balance analyses is the resistance iunction which
point, the moment capacity of the cross defines the relationship between load and

section will be enhanced, and this domain of deflection. Therefore. the method described 6.

behavior was of interest in the present here for the derivation of a moment-curvature #
investigation. Furthermore, the effect of relationship had to be carried further in
axial force on reinforced concrete beams is order to derive the required resistance
an increase in the strength obtained directly function. All the b'am-columns that were
from the equilibriuw requirement, Eq. (1), analyzed in this pnase of the study were
and no special provisions need to be included simply supported and loaded with a single
for that in the present approach. concentrated load at their midspan, but the

numerical approach that was developed can be
Special Considerations applied for the analysis of beams having any

combination of support conditions, and loaded
1. Formation and development of plastic with concentrated forces at any point along
hinges: Experimental observation from Refs. their span. A brief outline of the procedure
(14-16] indicate that the failure of a beam for computing the load-deflection
subjected to concentrated loads seems to relationship from a moment-curvature P_
occur over a finite length in the vicinity of relationship is presented next. e
the maximum moment. Thus, the formation and
development of a hinge requires special 1. Consider any point on the H - 8 diagram.
attention, and the following assumptions have Hi , 01 " :.

been used in this study for representing the
influence of hinge formation on the behavior 2. Assume that the moment H occurs at the -

of the beam. point of the maximum moment (i.e., in the

case of a single load at midspan this
a. If the peak moment, M.. is less than the point is at the center of the beam).

yield moment, M . the beam will be assumed to 3. Compute the lateral concentrated load Q,
behave elastically, corresponding to the moment HM;

b. IVhcn the center moment exceeds the yield 4. Obtain the moment diaram corresponding to
moment, a hinge begins to develop. The the load Q.
length of the hinge, L., is defined as the
distance between the location of the yield 5. Obtain the curvature diagram for the
moment. M, and tne point of the peak moment, entire span by using the moment diagram in
H_. The curvature over the length of the conjunction with the H - diagram.
plastic hinge will ', assumed constant and
equal to the magnitude of the curvature P 6. Compute the corresponding deflection by N_
corresponding to X P. numerical integration of the curvature

diagram over the span of the beam. This
c. As the load increases, the length of the will give the deflection b.

plastic hinge increases and may reach the
full length of the plastic hinge denoted by 7. Repeat the above steps for all points on
L based on the model proposed in [17]. the H - diagram for obtaining a complete

load-deflection (Q - 6) relationship.
d. For beams with an axial compressive

force, damage is more extensive near the DYNAMIC ANALYSIS
point of the maximum moment at advanced
stages of loading. In the present model, this For dynamic SDOF analyses it is required ---
was accounted for by increasing the maximum that an equivalent mass, a resistance
length of the plastic hinge, and it is function, and damping effects be defined as
proposed that the maximum length of the accurately as possible. In the preceding
plastic hinge be modified according to the sections a detailed discussion was presented
following expression. on the derivation of a rational resistance

function, however, some modifications need to
be introdaced for including dynamic rate

LPP - (13) effects on the material properties. TheX simplest approach is to include a dynamic %-_
enhancement factor, on the order of abo-

where A is defined as 30, which would provide a reasonable "3 .

estimate of such effects, as discussed
PAX141 other publications on the this and relate

A - 1-(14) subjects (1-3]. Obviously, the analyst can
Pb choose a more accurate approach provided that

his knowledge of all other parameters is of
Pb Is the thrust at balanced condition, equal quality. Regarding the dynamic analysis

and L is the maximum possible length of the that follows, the approach outlined in (1,21
plastic hinge when an axial force is also was adopted here. and that was due to the
present. fact that the previous results from the
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analyses of reinforced concrete slabs were The nine beams of Ref. [16] had rela-
judged to be very gcod. The dynamic SDOF tively small amounts of shear reinforcement
method is well known, the specific informa- and a high ratio of high strength tensile
tion on the present approach is available for reinforcement. In fact, as indicated in Ref.
further reference [1.2]. and therefore, no [16, a number of the beams were overrein-
additional details on it are presented here. forced, and this was the reason for very
In general, the various parameters are little ductility exhibited by these beams.
provided to the SDOF code, and the equation It was noticed that the proposed behavioral
of motion is solved for deriving the system's model for the effect of shear in reducing the
response to the given loading conditions. The ultimate flexural capacity and the proposed 7
corresponding results are then presented in model for the behavior of overreinforced
graphical and numerical forms from which the beams at failure is quite effective. The
analyst can assess the systen under consider- mean ratio of the computed ultimate load to
ation. The following discussion contains the measured failure load for this group was
detailed examples on the approach, and the 0.97 with a standard deviation of 0.08, and
corresponding results, the average computed deflection for the nine

beams at failure was only 1% less than the
EXAMPLES AND DISCUSSION average of the experimental deflection

values, with a standard deviation of 0.09. .
In order to demonstrate the application --"-ormore, the analytical load-deflection

of the present analytical approach and the curves for these nine cases were again very
accuracy of the numerical results the close to the experimental behavior for all
procedure was employed initially for the stage of loading.
analysis of 29 beams and beam-columns in the
static domain, and the results were compared For the 29 cases studied here. The mean
with test data for the same structural ratio of the ultimate computed load to the A
elements. After the method was refined and ultimate measured load was 1.02 with a
verified to be accurate it was employed for deviation of about 8%. The mean ratio of
obtaining their corresponding dynamic load- ultimate computed deflection to the ultimate
deflection relationships, and those were measured deflection (just before collapse of
introduced into the SDOF code for studying the member) was 1.05 with a deviation of 20%.
their dynamic responses. The complete load deflection relationships

for beam J8 is shown in Figure 3. and the
Static Response experimental points which are ma:ked on these

figures were obtained from data in [14]
Numerical results at the ultimate Again, it is noticed that the present

condition for the nine beams of Ref. [14] approach seems to simulate the experimental
indicated that the present procedure is quite behavior quite accurately.
effective in that the mean ultimate computed
load for the nine beams at failure was within
3% from the mean experir-ntal failure load.
with a standard deviation of 0.04. Moreover, Low Im
the ratio of the average computed midspan
deflection to the measured deflection, just
before collapse, was 1.02 with a standard
deviation of only 0.1. indicating that the
present approach for the computation of the
deflection at the ultimate curvature provides
good results. But, the degree of variability
for the computed deflections was larger than
that for the ultimate loads. $

From the results for eleven beams with 0
axial forces [15] it was observed that on the a a 16
average, the ratios of the computed to the MFL-IOe. N.-
measured values for moments and deflections
at failure were 1.04 and 1.11 respectively.
Comparing the analytical results of members F1.GURE 3 LOAD - DEFLECTION BFAM J8
in this group with beams of Ref. 114], it was
noticed that the variability for the mean
ratio of the computed ultimate deflection to
the measured ultimate deflection was higher
when axial forces were present. Nevertheless. In order to further demonstrate the
the procedure was still effective in that it effectiveness of the procedure with an
could provide satisfactory results for example, the static test on beam J8 was
obtaining the entire moment-deflection simulated by using the dynamic SDOF approach.
behavior up to failure. The ultimate experimental load for this beam

was recorded as 27.0 kips. and the numerical
goal -as to obtain the central deflection

q"I



from the dynamic analysis for a load of 26.0 For illustration purposes the dynamic
kips that would be compared to the corres- analysis of beam J8 114] is presented here.
ponding experimental data. The resistance The loading function was a triangular pulse
function employed in the dynamic anatysis was with an instantaneous peak of 70 kips which 6r

the analytical load-deflection curve obtained varied linearly to zero at 12 ms. and it was
earlier (see Fig. 3). The forcing function based on the data presented in [l for the
increased linearly from zero to a maximum of detonatlon effeczs of 9.' kg TNi charges at
26.0 kips in 0.45 seconds, and it was various distances from a given structure.
sustained on the beam at that value. :his Those pressure-time histories were applied to
choice for the loading function did not the loaded areas of the present structures,
require updating the :esistance function for thus translating the pressure pulse into an
rate effects, and the numerical solution for equivalent force pulse. The displacement.
the midspan deflection is shown in Figure 4. velocity, and acceleration time histories are
It can be seen that after sufficient time has shown in Figures 5 through 7, respectively.
lapsed, the displacement at the center of the The assumptions made for the structural
beam converged to a value of appro;.imately response under load reversals were similar to
6.8 inches under the sustained lead of 26.0 those derived in 11.2) for the direct shear
kips, which is virtually identical to the model, aad the general character of the
experimental value reported in [14]. results obtained in this study seem to be

quite rational, as compared to observed
dynamic rc 3ponses.

0gtIACKMLT.Vd.

A DISPLACEMENT [IN/S]4. t, I
S S=MJ v s 43l i ,... \

FIGIMiE 4 STATIC TEST SIMULATION u.i"/"_

n.m i.t po . .
I.namic ResponseTI i]

T-he present approach was employed for FIURE 5 DYNAMIC DISPLACEMEN - TIMEHISTORY

the analysis of the same beams under the
effects of dynamic loads which were assumed"N
to be localized, and to have a triangular
time history. It should be clear from the
outset that no experimental data were /'\

available on the response of these structures f VELOCITY [IN/S]

to concentrated dynamic loads, and therefore, N
it is not known whether the results obtained (
from this approach ar? accurate. Neverthe- Its-

less, based on previous results in which a iN y

similar approach was employed for the
analyses of reinforced concrete slabs under
uniformly distributed, or localized dy.namic
loads (1.2] it is ancicipatid that the
results obtained in this study would be of S..
similar quality. Also, it was shown in the TIME iS]

preceding section that the method is quite "J
accurate for simulating static, and slow
dynamic structural responses. However, it is
clear that the present methods needs to be
further verified, and such an effort is FL
presently underway at the University of FIGURE 6 DYNMICVELOCITY - TIMEHISTORY
Hinnesota.
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REILiFTRCED CONCtETE ARCHiES W.DE-R BLAST ASI) S4OC3 E2;"R~k%!EN?1S

by
Theodor Krauthar--er

Department of Civil and Mineral Engineering
University of Minnesota
Minneapolis. 11 55455

Experimental results that were obtained from laboratory and
field test of shallows buried reinforced concrete arches over a
period of about thirty years were combined for the develop-.ent of
behavior models which accurately describe te response of these
structures. Based on such development a simple analytical
approach was adopted and exployed for the analysis of several
cases for which adequate experimental data were available, and
the analytical results were found to be reasonably accurate. The
present apprczch is a preliminary step in the development of a
co=prehensive n.=rical procedure for rde assessment of such
structures .

INTRODUCTION of shallow-buried reinforced concrete arches
under explosive loading conditions are

One of the =ost efficient types of structures presented next, followed by the introduction

used for protection from detonation effects of a simplified nimerical "oel for their
is the reinforced concrete arch in which the assessment.
loads are transferred through the curve
geometry into the foundations. Under certain RAOCROUN-
conditions the state of stress in the arch
would be co=pressive, while it is possible The field of blast- and shock-induced

that other loading conditions would induce structural behavior can be separated into two

flexural nodes of response. The loading principal system categories: the first, under

environments under which these structures are the influence of nuclear detonations -hile
expected to perform result from the detona- the second relates to the effects of con-

tion of explosive devices, either nuclear or ventional explosives. in this paper the
conventional. In both cases the generated emphasis will be on structural behavior under

pressure-time histories are characterized by loads which may arise fro= nuclear detona-
a short rise time to a high peak followed by tions where the entire structural system is
an exponential decay to zero pressure loaded, while under conventional explosive

(typically, a negative pressure phase exists effects the structural response is rather
after that point which eventually also localized to the vicinity of the detonation.

diminishes, but in this paper only the A description of such localized effects w s
positive pressure phase will be con- idered). presented by Kiger and Albritton "1, and it
The duration of these pulses is generally can be compared to the performance of
measured in tenths of seconds for nuclear hardened structures under nuclea. derona-
detonations, while con:entional weapons tions. as further discussed in this section.

produce nuch shorter pulses. Naturally
structural designers need to analyze either Early studies on the effects of nuclear

existing systems or proposed designs in orier blast on underground structures provided a
to assess their expected performance under recommended design procedure for such
specified conditions. This requirezent leads facilities (2.31. A static design for the
to the initiation of theoretical and experi- peak values of the expected loads was the

mental studies for the development of an first step in the procedure, and based on the
understanding of structural behavior, and its preliminary design one could proportion the
relationship with structural properties and structural members. Tne following step was

loading conditions. The developments that to estimate the natural period of each

occurred over the last 30 years with respect member, and to co=pare those values to the
to deriving reliable methods for the analysis rise time of the applied load. If the ratio
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of the rise time to the natural period was cylinders which seems to assure a desired
greater then about 3, the structural desigi. performance. Nevertheless, the behavior of
was assumed to be adequate. However, if the these systems is not simple, and several
ratio was smaller than about 3, a dynamic attempts were made to derive analytical
design method was required. A simple dynamic techniques for accurately describing their
analysis could be performed by applying a performance [16]. Lipner et al. [17]
triangular pulse, that simulated the load, to compiled information on previous twenty
a single-degree-of-freedom (SDOF) system experimental studies in which arch-type
which represented the structure. From the structures were tested, and they presented

dynamic analysis the resistance of the that summary in tabular form for descriptions .'
members was evaluated, and compared to the of specimens, loading conditions, type of
resistance of the structural members obtained soil backfill, observed behavior, and
frm the preliminary design. The procedure comments on the study.
was iterative, proceeding until the analyti-
cal values and the values from the prelimi- It was concluded from sensitivity calcu-
nary appriach were reasonably close. Similar lations that the most sensitive property was
approaches were recommended also in later the compressive strength of concrete, which
publications (4). As for the material was also observed in previous studies [13].
properties under dynamic loading conditions, From studying test results it was indicated
an increase of about 25% was recommended for that the responsL of a buried arch to a
both the yield strength of steel and traveling airblast load can be characterized
compressive strength of concrete, adequately with four modes: rigid body

motion, uniform compression, symmetric
Arch-type structures have been studies bending, and asymmetric bending. The con-

by a number of investigators under the sensus in the literature was that collapse
possible effects of nuclear detonations, was due to response in the hoop and symmetric
Flathau et al. [5], and Grubaugh et al. [6) bending modes. This is not unreasonable when
studied arch and dome structures by full considering the stiffening effect of the
scale experiments under nuclear detonation surrounding soil coupled with the angle of
effects. In those tests, buried, und-rground the air-induced ground with the ground
reinforced concrete arch structures were surface, especially as the surface over-
subjected to airblast-induced ground shock pressure increases. Wong and Richacdson (18]
resulting from a nuclear detonation. Kennedy studied the response of these systems under
[7-9] studied the same type of structures dynamic soil-structure interaction condi-
under simulated environments, but primarily tions, and proposed various transfer
on small scaled systems. Balsara [10] functions for explaining the observed
studied four aluminum semicircular fixed-end behavior. The data in Ref. [11] combined
buried in dense, dry sand at a depth of with information from other sources, as
burial of one-half an arch diameter and discussed previously herein, can he ised to
tested dynamically. The maximum surface, form, at least, a qualitative descretion of -.
airblast overpressure was 300 psi (2.06 MPa) arch-type structures under explosive loads.
(positive duration about 600 msec) which Some of these sources [3,4] have been used in
caused damage. This study showed that it was the past for the assessment and the design of

possible to successfully scale the response, structural systems, including arches, to
and of buried model arches in the so-called resist detonation effects. In those
inelastic range of response. The buckles publications one can find simple procedures
formed at the springline highlighting the that the dasigners and experimentalists can
fact that this was the zone of higher employ for evaluating the anticipated
moments. The distribution of the interface response of test structures.
stress was not measured but apparently was
the same for the models tested. Another One of the main problema with many of
simulation study was reported by McGrath [11] the earlier studies, as were briefly
while Palacios and Kennedy [12] reported described here, was the lack of adequate
results from a test under simulated condi- experimental data for arch performance under
tions similar to the real conditions as controlled conditions from which one could
reported in Refs. [5,6]. In that test, a derive rational behavioral models for
500-ton surface burst provided the loading studying the effects of several design
environment, and two types concrete arches parameters on the response of shallow-buried %N
were tested. reinforced concrete arches under simulated

nuclear blast and shock environments. These
Meyer and Flathau (13] studied the conclusions le, to the requirement for a :

response of small scale unreinforced concrete controlled study, as described in Refs. (19-
arches under simulated nuclear blast effects 22].
in the laboratory, and Tener (14) correlated
experimental studies with empirical observa-
tions to form a generalized description of ;
buried arch behavior under dynamic loading
conditions. Flathau [15] proposed a modified
approach for the design of buried arches and t4,
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EXPERIME~NTAL OBSERVATIONS

Information from previous studies can be
compiled to provide adequate qualitative
descriptions of the expected system behavior,
and from such models one could develop
simplified behavioral models to be incor-
porated into reliable numerical procedures.

Consider the sequential structural
response, as illustrated in Figure 1. As the
oblique ground shock loads the structure one
may observe an asymmetric bending mode,
including side-sway (b), combinations of the
compressive mode and the first symmetric
flexural modes (e), and finally the damaged
structure at (d). The dynamic loads that
produce structural response are therefore
expected to cause specific damage, as
illustrated in Figure 2. One would expect
longitudinal cracks in the floor slab with a FIGURE 2 STRUCTURAL DAMAGE [!I]
possibility of shear failure at the arch-
floor connection (that possibility would
increase for certain thick floor slabs where Laboratory Arch Tests
the flexural response is limited), flexural
hinges in the arch at about mid-height One of the earlier studies on the
represented by well defined longitudinal behavior and response of small scale
cracks along the arch, and also a hinge with unreinforced concrete arches provided
some longitudinal cracks at the arch crown, important information on the relationship

between surface overpressure and crown

deflection in the static and t', dynamic
domains of behavior [13].

(a) Loadlal bolt's. (b) Asmftii WiI, aA series of static and dynamic tests

were conducted to determine the respons, of
unreinforced concrete, fixed-end arches of
different stiffnessbs buried in dense, dry
sand. It was hypothesized in previous work

that a buried arch would respond in sime type
of bending-compression mode where the com-
bination of moment and thrust at a critical
arch section will result in a compression-
bending type failure, i.e. failure would
occur in the compression region of the

Cc) 19,4 oy. stIc d) !t'tlm sia. failure envelope formed by a moment-thrust
"interaction diagram. If this was true, then

steel would not be needed as bending would
not play a dominant role in resisting load.
Pertinent properties for the thrte arches

A -""were as follows: Outside radius - 6 inches
N (152 =i); Arch thicknesses - 1/2, 1, and 2

inches (12.7,25.4, end 51 mm); Stiffness,
EI/R3 - 66, 600, and 6400 psi (0.45,4.13, and
44.1 MPa); Concrete com-ression strength,
f,' = 1200 to 1500 psi (8.3 to 10.3 MPa); and

FIGURE 1 STRUCTURAL RESPONSES the Depth of soil cover - 2 inches (51 mm).
Purposely a very Low concrete compressive
strength was used to create "weak' struc-
tures. u3vcvar, only the 1/2-inch arch
loaded statically collapsed at ground surface

These results ha',e been observed experi- overpressure of 150 psi (1.03 HPa). In
mentally in several studies, for example as general, the modes of response for the
reported in (5]. structures tested statically and dynamicalLy

were the same, as illustrated by the sequence
of structural response in Figure 3.

The confinement provided by the
surrounding soil was sufficient to fnrce the
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FIGURE 3 DAMTGE SESQSTENCE [[33]

-- burLUed arch to accept load efficiently, i.e. I I I

++"loading in the most efficient way that an to' ,.
arch can accept load. This is one of the few ..... ,.. o

test series where a collapse of a buried arch _.
has been observed, and where static load- .
deflection relationships were recorded. It ;

: ~ ~became clear that a better understanding was ._
needed on how load is transferred to a buried
structure, including the effe cts of soill I]
arching. In addition, the need for. ....

describing a realistic resistance- function ""-,'(i.e. loaddeflection relationship) was-
implied. FIGURE 5 DYNAMIC RESISTANCE [13]

• I

The measured crown deflections plottedagainst ovepressure are shown in Figure 4 likely to occur during loading of the 2-nch-
for the static cases, and in Figure 5 for the t a

I ~~structures loaded dynamically. From the tikac..static tests it was observed that the an

deflection of the /2-inch arch was greatest wr del n il

testnmi seadies wher ah colaps ofd a-nc buieiachk

for the same overpressures, and the deflec-

tion of the 2-inch arch was the least at any arches are shown In Figure 5. Because thelevel of p r e. The deflections of the frequency of the record for the 2 inch arch

becam cl-ertt a bettehk rchnderstd aprahdtaas h ehnia esrn

agreed well, the preliminary static test system, the pr-be probably did not remain in

nee dd on how lo-dishtrnsfercde toeabuedaprahdhaofheehniamasig

arch, which showed somewhat less deflection, contact with the arch cown, and the investi-"

struture inluid the ignore of soilpodngdaa

was made of somewhat stronger concrete than gtr a oinr h orsodn aa ).
the 1-inch-thick arch of the principal static For the 1/2- PnL -inch-thck arches the rise-
test. Taking these curves a indications of times for the deflection records were all
the downward deflections of the outside of well below the natural frequency of thethe arches, it is expected tat active soil recording syste, and it can be seen that thearching (reduction of the vertical load on I/2-1nch arch in tet D-0.5, loading -R/3,

rthe structure due to the structural defor- continued to defect consierably after the *1,

mal on) would be most likely to occur duing peak value of overprer was attincd, r
the loading of the 1i/2-nch arch and least indcatng that the arch underwent con- g
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siderable inelastic response. The deflection failed catastrophically. It should be
of the 1 inch (25.4 mm) thick arch showed no mentioned, however, that the KBH arch was
increase in deflection after the peak significantly damaged after the first two
overpressure was attained, indicating that tests.

the pressure was not sufficient to cause
inelastic response of the structure. However, In DAT-3, three arch-uype structures
based on the authors' assessment of the data were planned to be subjected to a predicted
this figure does indicate that an over- HEST air overpressure loading of 1740 psi (12
pressure slightly greater than 250 psi (1.72 HPa) simulating a 1.56-kt yield, while the LllMPa) could drive the arch into inelastic actual peak pressure was about 1842 psi (12.7

response if the duration of the load was long HPa). All the arches were similar in cross
enough., section and had the following properties:

Inside radius - 3.41 ieet (1.04 m); Arch
Those findings, as illustrated in thickness - 6.25 inches (159 mm); Arch floor

Figures 4 and 5 contain significant insight thickness - 9.3 inches (236 mm); Soil cover
on the behavior of such systems. In the over crown - 2 feet (0.61 m); f " 5000 psi
static domain (see Figure 4) the load (34.5 HPa); f (reinforcing steel) - 60 ksi
deflection relationships seem to be smooth (413.7 HPa); Keinforcement ratio - 2.15
and quite nonlinear, and in the dynamic percent; and End bulkheads - 6.3 inches (160
domain (see Figure 5) such nonlinearities are mm) thick. Structure A5 was composed of four
even more visible. Another important 5.6 ft. (1.42 m) long segments having the
behavioral aspect that is noticed from these above mentioned properties, while structures
results is the fact that arches with higher A6, and A7 were composed of only onc such
radius to wall thickness ratios (R/t) will in segment. The joints in A5 were keyed, or
general exhibit a lower load resistance and a butt joints.
higher degree of ductility.

The arches in the KBH series had the
Field Arch Tests highest overall normal stresses recorded from

the three tests, followed by the KED series
The arches tested under field conditions and, finally, with the lowest normal stress

were divided into three groups based on measurements recorded on the DAT-3 test.
structural type and detailing, and were named Sors of the peaks on the DAT-3 test were as
KBM, KED, and DAT-3, respectively, and their high as those in KED, but DAT-3 experienced
general design specificationb are presented relief of the load and did not accumulate a
with the following discussion, matching amount of impulse.

In KBH, the HE simulation produced an Vertical velocities were not as
overpressure of about 1972 psi. One 28-foot- comparable, since the KBM tests had only an
long arch with cold joints, 2.15 percent 8.5 m long arch and no short arch segments.
circumferential reinforcement ratto, 0.6 However, the KBH arch remained fairly intact
percent longitudinal reinforcement ratio, as far as vertical velocity comparisons
outer arch diameter of about 7.9 ft. (2.4 m), throughout the structure. In ratirg velocity
and wall thickness of 6.3 in. (160 mm) was output, DAT-3 had the highest vertical
tested. Results showed circumferential steel velocities at all measurement locations, and
was beyond yield, joint failure occurred in very little relative displacement took place

the region connecting the arch walls to the between the lower wall and floor. This was
floor. Ainges formed at the crown and at offset by the failure in the wall midsection
each fl.or joint. Floor failure was which allowed relative displacement in the
indicatad by results from strair gages but walls. The KBM arch also held its shape, and
not visible. The interface pressure data despite noticeable damage, it maintained the
Indicate that the stress wave arrived nearly best post-yield integrity in the test series,
simultaneously on opposite sides of the arch especially in light of the high loads on the
and the magnitude were aoout the same. structure. Maximum relative displacement

between the arch walls and floor occurred in
In KED, the HE simulation produced an the KED test, although the most severe

overpressure of about 1740 psi (12 MPa). The failure was obtained in the collapsed inner
cross section of the arch in this series was segments of DAT-3 Arch AS.
the same as for the KBM event, but the
circumferential reinforcement ratio was 1.9 The KBM arch held together because it
percent. and the longitudinal reinforcement had low relative displacements under th
ratio was 0.3 percent. Three arches were greatest interface loads. This is due to the
tested, one 28 feet (8.53 m) long, another size of the reinforcing bars used in thi KBM
11.2 feet (3.41 n) long, and the third 5.6 arch which translated into a slightly hiSher
feet (1.7 m) long. The longer arches circumferential reinforcement ratio. Relative
experienced soue longitudinal bending which displacements between the arch walls a d
tended to induce failure in the joint between floor were greatest in the KED test duL to
the arch wall and floor. Arch 1, that had the small reinforcing bar sizes and the
been loaded twice previously in KBM, was inadequate confinement oiL the concrete in the
retested again in KEn (third loading) and joint. However, this forced the failur
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region to move up the arch wall where bending In order to employ a SDOF approach one

and shear stresses combined to fail the arch. must define several parametric relationships
This type of failure could be less desirable which would represent the system's mass,
than the failures at the joint region resistance, damping, and forcing function.

connecting the wall and the floor, since they The present write-up is aimed to address

could lead to arch collapse similar to the these issues for the development of a
failures in DAT-3. consistent and rational approach in this

direction. First, regarding the problems of

Strain data from the three tests damping and loads it is proposed to adopt the

generally reflected the degree of stiffness conclusions presented in [23,24J, as follows.

in the sections. The KBM arch had the Damping will be represented by a critical

largest reinforcement ratio and the best damping ratio in the range between 20% to 40% N
stiffness configuration among these cases, so which includes both structural and soil-
that in areas of stress concentrations, like structure interaction contributions. The %

the lower wall, higher magnitude moments were reasons for such crudeness are the relatively -
carried by the stiffer cross-section (and high uncertainty regarding these parameters,
eventually by the reinforcement) as the and the fact that the proposed approach is
corner remained fairly rigid in spite of empirically rational. The forcing function
noticeable shear failure of the concrete in would he represented by an approximate air-

the joint. The smaller reinforcement ratio blast pressure for prediction purposes, or by

in KED allowed more flexibility and ductility blast gauge readings for post-test analysis.

in the section after the concrete cracked, The remaining two parameters are more compli-
and therefore, the moments were lower in the cated. Both the effective mass, and the *

joint area but higher at the crown and t.e structural resistance must represent closely
$ floor center. The stiffness level was the nonlinear dynamic response. The mass

recovered in the DAT-3 test by arranging the would include part of the structural mass
steel in the joint region to enhance the (the responding arch), and part of the soil

contribution of the reinforcement (due to overburden. Based on observations from field
geometrical constraints the reinforcement at and laboratory test, as previously discussed

the joint was less than originally recom- here, it is clear that the portion of the Q'-

mended by the author), and the failure, structure between the hinges at mid-height

subjected to stress concentrations at steel and the crown are expected to rasponse.
cut-off points, was relocated to the weakest As a result one can define an effective

Ssection which was in the arch.Asarslon ndeneaefete

mass which would represent that portion of

ANALYTICAL CONSIDERATIONS the arch, as shown in Figure 6.

The response of shallow-burieo rein-forced concrete arches cannot be accurately 18 ARCH I

described and formulated without explicit 180
consideration of all governing behavioral
mechanisms. Among those one must include the
issues of loading conditions, soil-structure
interaction, structural element response, and
the effects of structural parameters on that
response. In ordcr to include all these R
issues in the analysis one must resort to 2
employing advanced computational procedures
(such as the finite element, or the finite HNE

difference techniques) by which it would be
possible to represent the individual effects, R I!,
and the complicated interactions beteen the
various paramet-ers. This, however, is not
always simple since it requires large
computational resources, and a fundamental
treatment of several related issues. At
present such an effort is underway at the FIGURE 6 MODEL FOR EFFECTIVE MASS
University of Minnesota, but the results will
not be available in the near future. Thete-
fore, one would have to consider the imple-

mentation of simple procedures that were from which the mass factor is clearly e/180.
shown to be very effective if used properly. but from Figure 6:
One of such methods is the simulation by a
single-degree-of-freedom (SDOF) system, as 9 - 180 - 24 (2)
performed for shallow-buried box-type
structures 123,241, and follcuing an outline and

discussed in [161.
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R 1
sin -. -.. (3) LOA

2R 2

5W 1 ma X

- sin-' - - 300 (4)
2

and the mass factor

180-60 120 2
CH (5) N

180 180 3

Also, it is proposed here to employ the _ j_

soil mass above the responding portion of the 0.25 t 2.0

arch. Both these conilusions seem to be cW DEFLECTION

similar to the findins and recommendations
in [25]. FIGURE 7 RESISTANCE MODEL

The development of a resistance function
is performed similarly is discussed in
[23,24]. The peak resistance for the arch in Also, it is noticed from the experi-
the uniform compression and in the flexural mental data (Figures 4, and 5) that the
modes of response were estimated in several resistance could remain essentially constant
publications [2,3,4, and 25]. at w... until about A - 0.5t. No accurate

experimental data was available beyond that
DISCUSSION point, but based on results from more recent 0

studies [19-22] it was decided to try a
Employing the approach proposed in constant resistance until A - 2t. Combining

[23,24] one could develop a resistance these details results in the empirical
function for the arch (i.e., a relationship resistance function, as shown in Figure 7.
between the distributed load w and the corwn
deflection A), as follows. Assume a second The analysis of the system is performed
order polynomial relationship between the by assuming that the arch would respond with
zero condition, point 0 in Figure 7, to the respect to a stationary floor, and thus, the
peak resistance, w..., at point A. For that computed motions would correspond to the arch
relationship one must employ rational crown of a theoretical system which does not
boundary conditions, for example: include the response of either the floor, or

rigid body motion. The present approach was
1. w - 0 , A - 0 employed for the preliminary analysis of the

arches described in [19-22], and the computed
2. w - w x , 6/t - 0.25 crown displacements are compared to test data

in fable 1. In the present analysis the
3. w - w.. , 8w/A - 0 (6) resistance functions do not contain length

effects, and therefore, only one arch of each
therefore, the general relationship of series was studied numerically.

the form shown in Eq. (7)
DISCUSSION AND CONCLUSIONS

w - AA' + BA + C (7)
The behavior of buried reinforced

Introducing the conditions in (6) will concrete arches is of continuing interest.
result in the following relationship. and several studies were conducted for

providing information on the subject. The
- ma1 x wiax approach adopted in the present study is a

w - - - A (8) preliminary one that is aimed toward the
t
2  t development of simplified rethods of

analysis. This approach is based on observed
Also, it should be noticed that the structural behavior under static and dynamic

initial stiffness for the system (i.e., the loading conditions, and empirical relation-
slope at A - 0) is ships between applied load and crown deflec-

tion. The early results obtained by this
8w w1 A, approach seem to be reasonable, but cannot be

Ko - ()A.o - B - 8 - (9) used for more than deriving qualitative

8A t conclusions on the response. Inspection of 0'

the test structures revealed that the peak
displacements of the floor slabs we.e
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TABLE 1 - KACHINA Arches Experimental and Analytical
Peak Displacements

Measured Computed
Arch Deflection* Deflection*"

[min [mm]

KBM A2 120 55
KED A2 330 181
DAT-3 A5 235 110

* Relative Crown-floor deflection K%1

** Crown deflection

approximately equal to the peak crown 2. Newmiark, N.M., Hansen, R.J., Holley, M.J.
displacements, and thus, the present approach and Biggs, J.?., "Protective Construction
seems to be surprisingly accurate. The Review Guide," Vol. I, Department of
continuing studies at the University of Defense, June 1961.
Minnesota will address these issues, and are
expected to provide useful structural 3. Newmark, N.M., and Haltiwanger, J.D..
assessment tools. "Air Force Design Manual, Principles and

Practices for Design of Hardened
It is clear from these results that one Structures," Air Force Special Weapons

must consider the floor response, the effects Center, AFSWC-TDR-62-138, December 1962.
of dynamic shear, and the contributions of
reinforcement detailing on the response. 4. Crawford, E.R., Higgins C.J. and
Several relationships on these issues were Bultman, E.H., "The Air Force Manual for
derived, and are being evaluated. Preliminary Design and Analysis of Hardened
results show that the effects of confinement Structures," AFWL-TR-T7-I02, October it
and shear can be incorporated very effec- 1974.
tively into the present analysis. Also, that Vi

by employing a mulci-degree-of-freedorr (MDOF) 5. Flathau, W.J., Breckenridge, R.A., and
approach, it is possible to compute rilative Wiehle, C.K., "Blast Loading and Response
motions between the arch crown and the floor of Underground Concrete Arch Protective
slab. Nevertheless, such efforts are not yet Structures", ITR-1420, Operation
complete, and therefore, these results will Plumbob--Project 3.1, U.S. Army Engineer
be presented at a later time. Another issue Waterways Experiment Station, November
that needs to be addressed in the future is 29, 1957.
the effect of the arch length on the
structural response, and how such an effect 6. Grubaugh, R.E., Morrison, T.G., Koike,
can be represe.ted in the MDOF analysis. R.S., Neidhardt, G.L., and Tuggle, W.,

"Full Scale Field Tests of Dome and Arch
ACKNOWLEDGEMENT Structures," ITR-1425, Operation

Plumbob--Project 3.6 Air Force Special
The author wishes to thank the Defense Weapons Center, October 11, 1957.

Nuclear Agency (DNA), and the ir Force
Weapons Labsortry (AFL/NTESA) for their 7. Kennedy, T.E., "Comparison of Simulated
continuing support and cooperation on this and Field Tests of a Buried Concrete Arch
effort. Structure," U.S. Army En&ineer Waterways

Experiment Station, Miscellaneous Paper
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DYNAMIC STRESS AT CRITICAL LOCATIONS OF A STRUCTURE
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IThis paper describes an investigation of analysis methods for predicting

dynamic stresses at specific critical locations in a structure, by finite}w

element methods, and the development and improvement of modal models using a
novel Random Walk approach to correct for differences between analytical and

,experimental results.

1. INTRODULTORY REMARKS Given the requirement that the structure
must be qualified by analysis for each of the

In the design, development, and specified environments, it seems at fiist sight
qualification of an aerospace structure, to be straightforward to perform a number of
structural adequacy under actual and specified dynamic analyses equal to the number of
environments has to be demonstrated. Typical environments, and obtain te margins of safety
dynamic environments for a ballistic missile from a critical examinati- of many presentfor instance, are sustained acceleration, practices for achievint, thi, end. This method
transportation and handling, acoustic reveals some shortcomings which, when
excitation, operating flight, and payload scrutinized in dettil, leav. the goa: of
reentry. For each dynamic environment, the structural qualificat.on unaccor,)]';hed. It is
missile structure must be shown to have a the objective of t;,ts paper to dis ,sirse on the
margin of safety equal to or exceeding zero. pitfalls of proving structurtl ad ,.acy, and to

suggest remedies for uxr- of the d~ficiencies.

Should the missile pass an actual flight
test unscathed, this fact by itself does not Ideally one would wish for an analysis
qualify the structure for the flight method which, prior t0 a dynamic test to
environments. First, while the missile failure of an aerospace structure, predicts
structure has undergone a set of actual exactly the magnitudes and durations of the
er.vlronments, it has not necessarily failure load, and the location in the structure
encnbntered the maximum expected set where failure will occur. This prediction
corresponding to the worst flight trajectory. should work for all prescribed dynamic and
Secondly, thc environm-ent design factor, which vibratory loads, and for each set of load
ideally is the ratio of the specified conditions in turn, for failures caused by
environment to the maximum expected actual overload or fatigue. Admittedly this is a
environment, has not been taLen into account, forever elusive goal, but analysis and dynamic

testing practice can be improved such that the
Simulation in tne laboratory of each of goal is being approached step by step. The

the dynamic environments, and subjecting the investigation reported here is an attempt, in
structure to the environmental test, is a that direction, to devise a finite-elementrealistic but impractical and costly approach. dynamic model which will give accurate dynamic
Hence, there is little practical alternative stresses at failure locations (one location for
other than to qualify the missile structure by each load environment) in the structure, and
analysis. This observation reflects Morrow only approximately accurate stresses elsewhere.
[1], who said nStructures are to be qualified Specifically, the scope of the effort will
by analysis but equipment must be qualified by include: (a) Vibration environmental
testing." The latter statem*nt mostly specifications, design and testing proceduresreflects the fact that the dynamic behavior of of a typical aerospace substructure (e.g. one

components such as electroni- printed stage of a missile) are delineated to show the
circuits, transistors or com uters is requirements for verification of design
difficult to model mathematically, and their adequacy. Dynamic analyses, choice of failure
thresholds of failure are even harder to theories, and an accurate dynamic model are
estimate without experimental evidence. shown to be crucial in fulfilling the
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L
requirements. Vibration testing data are theories of failure have to be postulated.
needed to modify the finite-element model Take the simplest case of the Maximum Stress
initially constructed from engineering Theory. The following formula gives the margin
idealization in the search of an accurate of safety for fracture, (MS)f:
dynamic model. This investigation chooses the ."
dynamic strains at the location of predicted (MS)f = Su/N (1)
structural failure as the quantities for e -  R
matching between .nalysis and experiment; (b)
A n'ethod is devised to choose candidate points where Suis the ultimate strength of the
in the structure, the population of which material, N is the factor of safety: A typical
includes the point of structural failure. To value of 1.2E applies to launch and flight
render vibration testing for model loads. S is the induced stress at the critical
verification practical and cost effective, a point (where failure would occur) of the
criterion for a minimum number of strain, structure for the maximum expected, or
force and acceleration measurements is specified, dynamic environment, and e is the
established. The results obtained for model environmental design margin intensification
matching are in the form of force-to-strain factor; A typical value is 3J dB or a factor of
and acceleration-to-strain transfer functions; 1.5. The factor of safety U accounts for
(c) Structural failures due to dynamic loads uncertainties in the ultimate strength of the
or fatigue when the aerospace substructure is material (one dimensional tensile stress versus
subjected to the specified vibration multi-dimensional stresses in the structure),
(deterministic and/or random) environment are fabrication variations and a "multitude of
derivable from the transfer functions other sins." It is best considered as a factor
obtained. Theories of failure have to be that lowers the material ultirmate allowable to
assigned a priori, however; (d) Revised the working or design stress, S.
structural mode shapes become a corollary of
the correct stress transfer functions, and the The interpretation of Equation (1) is as
advantages of employing them in certain follows: If the actual dynamic environment is
applications are discussed. A computer intensified by a factor e which should be then
program using a novel Random Walk method the specified environment for analysis or
corrects the analytical mode shapes based on testing, and if the dynamic margin of safety,
the measured natural frequencies and transfer (MS) , is calculated to be equal to zero, then
functions, and the modal damping parameters the teak of the transient dynamic stress at the
derived therefrom. critical point of the structure should have a
The approach and procedure are demonstrated value equal to the working stress, S = Su/N,
with reference to a specific structure, namely
the main frame of a very high frequency high a predetermined quantity. Hence, jMS) is acycle/low cycle fatigue test machine being definite, calculable, quantity in dynamic
developed at the Materials Laboratory, this analysis and is a measure of "closeness to the
being the structure whose dynamic model is design state for the stircture," not a measure
adjusted for correct stresses. This structure of "closeness to structural failure." This is
was chosen as the example because it required in contrast to the missile flight test, which
finite-element modelling by rather is an up-or-down threshold on structural integ-
sophisticated solid elements to match the rity. Nevertheless, margin of safety is a good
natural frequencies between analysis and measure of structural adequacy.
experiment.

it is also noted here that, because of the
1.1 CRUCIAL SUBTLETIES OF ANALYTICAL environmental design margin and the factor of
PREDICTOr. safety, the dynamic analysis of the structure

should operate within the elastic range of the
Ideally the analytical prediction should material. Thus the employment of linear modal

precisely foretell actual events. Consider analysis is justifiab:e.
the case of a missile structure subjected to a
deterministic, dynamic, environment with the Verification of Dynamic Model
structure designed for certain values of
factor-of-safety and environmentol design Unless the mathematical dynamic model, in
margin. Should the dynamic environment then essence, truly represents the physical
be increased beyond the design margin the structure, qualification by analysis will lack

anaysi would redict , ngtivecemarilo a sense of reality. The question then rests on
safety. One would assume, not necessarily what are the essential features of the
correctly, that failure would then occur. The representation which, in turn, depend on the
following actions explore the reasons and objectives of the analysis. If, for example,
delineates the difficuities to be overcome, the first few bending frequencies of a missile

are needed for the prediction of the stability
Margin of Safety and Failure of the guidance system, then a mathematical

model which gives beam bending frequencies that
Surprisingly, the margin of safety is not match those measured in a vibration

a measure of closeness to failure. For survey test is a good dynamic mode]. On the
prediction of failure by analysis, some other hand, if the analysis is to show

30

%



structural reliability under dynamic model as a starting configuration and perform
environments, then such a verification an eigenvector analysis on this model.
criterion is inadequate.

(iv) Use a resonant mode method (described
If linear structural analysis is later) of selecting candidate points within WK

sufficient for the purpose of qualifying the which population the Lritical point is likely
structure, and if the mathematical model to be, and where measurements will be made in
provides the correct normal modes, then it is the experimental vibration survey test.
an adequate representation of the physical Perform preliminary dynamic analyses on the
structure regardless of the nature of the unverified mathematical model to further reduce
external loading, whether harmonic, transient the number of choices of Landidate points.
or random. This approach is not practical,
however, since the number of dynamic (v) Conduct a vibration survey test on a
measurements has to be equal to the number of prototyp of the structure, measuring natural
degrees-of-freedom of the structure. frequencies, modal damping, and response/load

transfer fbnctions at the candidate points.
If the problem concerns structural This experiment should be performed with care

reliability, then it should be related to the and precision so that the measured values can

manner of structural failure and its location, be used as standards to which the analytical
which is termed the critical point or the values will be adjusted.
"weakest iink." Would a dynamic model which,

upon analysis, furnishes the correct (vi) Employ a novel Random Walk
displacement or acceleration response at the optimization, which eludes local minima, to
critical point be a satisfactory minimize the differc.,ces of the strain transfer
representation? An affirmative answer is not functions as measured and as calculated at the
directly obvious. The criterion of a dominant response frequencies. The quantities
successful dynamic model actually depends on to be adjusted are the calculated mode shapes
the theory of failure postulated. For the at the candidate points, resulting in the
simplest maximum stress theory, which states dynamic stresses at those points being correct

that failure will occur when the maximum value after mode shape modification.
of the dynamic stress at the critical point
reaches the ultimate strength of the material (vii) Utilization of the same Random Walk
at that point, the dynamic model which gives method to adjust the mode shape values of the
the correct stress at the critical point is a modes at points other than the candidate
successful one. points, so that the ode shapes will remain
It is apparent that a mathematical model does orthogonal. The final adjusted dynamic model
not have to represent the physical structure then becomes a set of normal modes which yields
in all aspects, but should contain the truly correct dynamic stresses at the candidate
essential features, the latter depending on points (which include the critical point).
the objectives of the analysis. Even though there is no absolute assurance that

dynamic stresses elsewhere in the structure
will be corrEct, the calculated results from

1.2 SYNOPSIS OF PROPOSED METHODOLOGY FOR this adjusted dynamic model should be better
VERIFICATION OF DYNAMIC MODEL than those from the unadjusted model. t

The proposed methodology is outlined below 2. THEORETI:AL DEVELOPMENT OF THE METHOD
and details of its development will be
presented in subsequent sections of this 2.1 Normal Mde Mathematical Model and Dynamic
paper. Responses (Displacements,

Consider the simple case of Maximum Stress The differential equation model of the
theory as criterion of structural failure. structure is taken in the form:
The procedure of the analysis is as follows: [m] l +[k() + i) -q ) x ft 2

(i) Set the criterion of a satisfactory [lt

dynamic model as one that yields the same where xJ is -he matrix of generalizeddynamic stress at the critical point (point of displacements. Suppose the structure has n ;

failure) of the structure as can be obtained
by measurement. degrees of freedom. If the set of n transfer

functions (re.:eptances) associated woith the
(ii) Consider the normal mode model of the structural system, as easured experientdlly

structure to be suitable for the purpose of and derived from analysis, are made to agree,
proving structural adequacy. Once this normal then the finite element model giving the same
mode model meets the correct dynamic stress transfer functions is a realistic one, and tne
requirement, all dynamic analyses will employ dynamic analyses perforwd on it for any kind
this model instead of the discrete mass model, of loads woulu be accurate.

(iii, Use standard engineering idealization The formi solution of the differential
to establish a finite- element mathematical equation model given in Equation (2j will be "-
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by the classical method of normal modes. The 2.2 Strain Transfer Functions at the
transformation of the generalized coordinate Critical Point
lxi to normal coordinate fqJ is through the
rodal matrix 4.J. Usuall y, only a limited Since only the critical polat xc is of
number, m, of the mode shapes can be importance, the displacement /Yorce transfer
accurately determined either analytically or functions associated with it are better found
experimentally. Hence the order of ri] is using the following formula instead of
(nxm). The modal mass, modal damping, and calculating them from Equation (5).
modal stiffness matrices are given by: M

{ I [€] H q HxP() XcS PrsYs(,J) (10)

rH'Ms J = []T[m][0] (3) for P = P1 , P .... P, the p applied loads

located at stations of the same designation ink" s J = 103 [k(l+i7/)][O] the structure.

where the superscript T is the transpose, and We wish to derive a similar expression for

the subscript s is equal to 1, 2, ....; m a strain/force transfer function, to be
denotes the natural modes; ws is natural compared directly with strain gage measure-
circular frequency.s ments. Let the critical point x be encased in

a finite element in the mathematical model.
If the system is subject to sinusoidal The strain transfer function, 1H E (0)1, and

the stress transfer function, 1Hrvtco)}, with
excitations, {fol ei , the displacement the input at P and the output at X, are
responses of the whole system will be given by functions of the displacement transfer

functions of all the nodes of the finite
X HP)] I{fole i f (4) element. Formally, they are expressed a.

follows (See Appendix I):
where the transfer function matrix: ,'K'
[H(H ())] Y [[rBI) (5) . ,.),b d

[fill5= rc i [B] 1( (12)
and the s diagonal element of the admittance | or U

matrix rYs(w)2 is given by: where [B] is the displacement to strain
transformation matrix and [C] is the

1 strain-to-stress trarsformation matrix. These
(6) transfer functions, however, are expressed in

.Ms 2(l.iEl global coordinates. To convert the strain and
[US is) stress vectors back to the local coordinates of

the finite element, for the purpose of matching
If the system is subject to a set of the strain gage measurevents, we need to

external transient loads,tP (t)J, the system multiply them by the transformation matrix [T].
response {x(t)J can be foung as follows: Hence, we have the result:
The unit impulse response matrix of the system
is given by., H'ec )f = [T] JHC' ( )I

2 cr cr

[h(t)] I Ht) coswt do (7) 1H (cj )I = [T]I 1 o (13)
f 0 CT cr

where ReH(p) is the real part of H(4) and: Appendix I shows an example, using an 8-node
solid element, for the derivation of the stress
and strain transfer functions, giving explicit

t expressions for the transformation matrices.=h(t-- )j {P Pr)}dTr(8)
r 2.3 Search for the Critical Point

xt

If the system is subject to a set of For each given loading environment, if it
random loads characterized by the power is increased progressively and proportionately

* spectral density matrix, Spp u ( ), the system everywhere on the structure, failure will occur
resp--se in the form of pow r spectral density at one location in the structure. Thus there
matrix is given by: are several critical points, and the same

T number of dynamic margins of safety, for the
[Sxx = [H()]* [Sp (v7 [H()] (9) missile airframe specifications. Even if an

accurate dynamic model of the structure is '
where subscript P is another external force available, the dynamic analysis performed on it

U has to evaluate the dynamic stress everywhere
l acting at xu and [H(07)* is the complex in the stricture and find the location having

the least margin of safety. So far, we do not
conjugate of [H(C)). have an accurate dynanic model, and hence the

dilema is still present.
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Suppose we, by some guideline, pick a the results can be taken as standards which

finite nuwer of structural locations (nodes analyses are made to madtch.
in the dynamic model) called the candidate
points, within which population the critical The successful mathematical model must have
point is likely to be included: then the task the correct strain transfer functions, at the
of analysis becomes more manageable. The critical point x , for all p loads. Since x
number of candidate points can be as large as is known only aring q candidates, the number of
the engineer chooses. One method of choosing transfer functions HE (0) would be (p x q).candidate points is suggested here. Taking the previous eA ple where p = 10 and q

= 40, the number of response measurements will
Resonant Modes Method be 400, much too large to be practical.

Vibration responses of airframe strmctures In measuring the strain transfer functions, A.
are usually measured in the low frequency in accordance with the above procedure, a iN
region, and are more prominent at the resonant sine-sweep excitation is applied to each of the
frequencies of the structure. This is true P locations in turn and the strains are
even for random vibrations. Even though we do m4asured at all the x. locations. J
not know which natural frequency will be 

.

excited, since the frequency contents of the The following test method will greatly
loading environment are not analyzed, we reduce the number of vibrator setups and the
realize that the dynamic response will number of strain measurements: first we modify
encompass the first several resonant modes in the scheme of numbering the candidate points
some manner. and the loading locations. Table I illustrates

the system.
Let the structure statically assume the

first mode shape. This pseudo-displacement
load will induce stresses at various locations TABLE I CANDIDATE POINTS
in the structure. We will use the static
margin of safety as the selection criterion, Node x Candidate Pointsf Load P
and choose say 20 candidate points. Let the
same procedure be repeated for the 2nd, 3rd,
and 4th modes, say. We then have q=40
candidate points or less if some points are x 0 0
repeated. Since any one natural mode might be
prominent in the dynamic response, all the x2  P
candidate points for each mode are included in 0 0
the study. This method will be correct if one
single mode dominates the response. With iI P2'
superposition of the significant modes, the
highest stressed point for one mode might not r2 0
be the h-fhest stressed point of the "-,
superposition. Hence we choose 10 candidate
points for each mode.

2.4 Number of Measurements for Model 0 0i

Verification 0 0
x. 0 Pr P-

We have defined a successful mathematical 0 r.J

model as one which, when used in a dynamic
enalysis, yields the same dynamic stress at
the critical point as that measured 0
experimentally in the actual structure, fq
subject to the same dynamic environment. The 0 Pp
corollary is that, for linear structures, the X
successful mathematical model has the same n
strain/load transfer functions, at the
critical point, as those experimentally
measured. Let the candidate be at f,.... C (for

location). Instead of numbering tm q
Consider the case of q candidate points in sequentially thus, we just specify the

the structure, subject to p discrete loads, locations at the nodes of the finite element
It is assumed that the prototype structure has model where they occut. Similarly, the loading
been built and is available for dynamic locatiun is specifiec also at the ne s. The
measurements. Furthermore, it is assumed that underlying reason is to make use of .he Maxwell
the loads P (t), and their correlations, are Reciprocity Theorem:
known (as spilled out in a specification for
exatple) and the experiments performed in the HxiPj (to) = HxjPi{() = Hij(t) (14)
laboratory are skillfully conducted so that I'

I -
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[H] is a symmetric matrix. Now we wish to find inaccessible for strain measurement, and as an
HxiPk(W), the transfer function at x. due to a alternative two or w ore strain measurements

H are taken in its reighborhood, the
force at xk, without having to easure it interpolation of H (L) will be difficult. If
directly, we adjust the mode lhape values of the points

measured such that the transfer functions at
H C i P ej those points agree with the measurements,

H xiPk Hik -Tk -T " (15) interpolation of mode shapes will be more
T ~feasible; (2), When a portion of the structure

-1 needs to be examined later for internal loads,
H Hi j .. H. stresses, etc., performing another experimentHik j j

to determine new He (0s) values is usually out --e
However: of the question. lRth a dynamic model fl,].

[NJ, which is only slightly different from the
H = Hk (16) original model, but gives correct Hc (i)

values at all candidate points incluging the
-1 critical point of the structure, the analysis

. HXiPk = Hxipj Hxjpj Hxkp. (17) of the selected substructure should be ank ( improved one. The same would be the case when
That is to say, if one vibrator is placed a portion of the strdcture is altered, or

at x. for the test, and strain measurements additional portions are required, and component
are 4aken for all the candidate points and mode methods are used for analysis.
also all the loading locations, including x., .

then all the required H(u))'s can be derived3  In making the choice of the theoretical
from these measurements. This is a total of dynamic model on which adjustments are made, we
(p+q) measurements and only one excitation require the theoretically calculated natural
input. For the previous example, the frequencies to be close to the measured ones
resulting 50 measurements is an improvement (say, within 5%). Otherwise, another process
over the initial 400. of engineering idealization of the structure is -

required to produce a satisfactory starting
As a practical matter, in a case where it model.

is difficult to measure H.. with the strain
gage placed at the vibratP input, the testing khen that is accomplished, we use the
procedure can be as follows: easureo values of resonant frequencies, ,,

and modal damping coefficients, , for th.
(1): E2Vloy a vibrator at another adjusted model. The theoretical Values of Hs i

location x. and obtain all the and 101 at the candidate points will be
H.. {.)'s3except for i=j, for a ad.isted to give the measured Heq Pr(u))' t4-
tdal of (p + q -1) measurements.

knowing the mode shapes at X. and Xr, and the
(2): Repeat the testing with the vibrator location of the candidate point and input load,

at another location X and measure respectively. Hence, the quantities for
the transfer function at X- and adjustment are:
another point X-

Ms; oxis; and oprS- (S =1, 2. ---, m modes)j Pk
H The number of these quantities to be

4k UJi P. adjustea is quite small. Furthermore, each

-1 candidate point will have it's own quantities= a H -1  H
H j XP. xi Pk Hxi Pi (18) for adjustment, independent of the others.

An even better method for adjusting the
Noting that H.i~ was previously easured, modal values is based on our suggested approach

of having only one vibrator input at X., and
we now have two addizional measurements, obtaining H All the transfer funitions
making a total of (p+q+l) measurements for the
experiment, due to (ether loading locatios are derived from

it. Therefore, P.; and the row matrix [0..it-2
2.5 Adjustment of the Dynamic Model 0.-1 are the only quantities to be adjust6.3

Stffce, in the experiment, we have one loadin
As shoum above, correcting the dynamic input at X. and measure Nei pj (4)) at (p + q3

model might not be necessaiy if the critical
point whose stress/load transfer functions are points of X., be they candidate points or
experimentally determined, and its location loading poiAts. m
are selected frm dyramic analyses. However,
there are situations when correcting the HX pj i) = ' is %s %js ^s (  (19)
dynamic model to match experimental data might s=
be very desirable. For example when (1), the After adjusting the modal values at X. and
critical point in the structure is considering these values invariant, then each
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mode shape [0. ] will be adjusted alone. where,
Otherwise theR will be conflicting values of
[0- ] for matching the different measured Ksa = Hsal etc ... (23)CH pj (10). A s = Is2 ' cis =W s 2,'s s s2

The analytical form of the transfer
function may be written as and is now a set of three linear equations with

three unknowns, A, , and y Explicit
2 _ As (solution of the equations yields.

1 ij(W) 1 2 2 2 4 2) 2

-~1 )+()A a Ab 2 (Ska - O
where ls = is lijs sth mode contribution Ac -( 2 c)

Ms  sth mode mass

th K -K C4'?i %h mode damping CS sa sb a b
s natural frequency A

-J locations on the structure 1 -1 2 2
K Ksc (24)

Here the O's are defined as "strain mode 
sb sc

shapes". The relation between and 0 is -1 2 2
defined in equations (10), (13) ano (20). is (KsaAs + 2as~a -Na "tpa e/4s

None of the above parameters a-e known

except for the excitation frequency and the -1 -1
value of H..(o) measured at discrete Ksa - Ksb 2(Va - b)

locations. JNote that H..( ) at & may not A =
be in the processed dat33anh, in fa~t, evenij -1 -imust be extracted from the experkmental data. Ksb - Ksc 2 4 b -dc)Consider the values of lHij(Q)l at sar tacsa Hence, as seen from equations (22) and (23),

(b1 and 0 , within the half-power region of the approximate values ofosns andjus are foundabresonantsYrequency wi (such an assertion

can be subsequently chehked).thThen from from the experimental data only. Denote these
Equation (20), taken at the s mode and 2 values by rso' 7so' and Iso' and the squared
writing a simpler expression forI H.i((O)], we
have M I values by aso' ,so, and Aso. It is noted here
K ob ,¢ jabcI "  

s that 0s , and /ILs involving the mode shapeKa b c - J .~ i s.- (U 2_ s - )2 +  Is2,J 4  (21) s s

values at X and X., are the quantities that
Note from Equation (20) that the value of need to be Ixtract~d from experimental data and

H..(.) is dependent on parameters at all incorporated into the dynamic model. So far,
rgonant frequencies,&) . Hence, Equation approximate and initial values of these
(21) has too many unknowns to be solvable. quantities for all m significant modes havebeen ;ound.

To find initial, approximate 
values of fe,

w, andnas starting points in a random walk It is postulated that the total dynamic
gptimatio method, the following procedure is stress response is the sum total of the
chosen: responses of the m modes, and in curve fitting

of the Hi j(0) function, the theoretical curve
In the close neighborhood of co, only one

term (at') ) of the series in Equaiion (20) is derivea from the finite-element model should
significant [2]. Hence, as a first match the e .perimental curve at each of the
approximation equation (21) can be expressed measured points in the halfpower range with
as: minimum error. The initial theoretical values

A will be progressively revised by a Monte CarloK nathod to minimize the error. The function to(sa -cca)2+ _y Cs2 be minimized is:
s a s s

K . ) ' - Minim= (25)
ssb - )2+ ys (22)

(01 s % (22) Equation (25) can be efficiently minimized

As  using the novel random walk method d2scribed
K = in section (2.6). The steps for adjusting the
sc (as -°)2+'Yo(2  dynamic model are as follows:

35



Step 1: Cnmpare the natural frequencies To illust-ate the minimization procedure,
.lculated using the unadjusted consider thu simple example shown in Figure 1,

dynamic mode to those measured, where F is a function of the two dimentional
for the purpose of assuring that space ( 1,k) Starting with an initial guessthe finite element model is corresponds to the point 0 in

sufficiently accurate to be the 1pae, -F is evaluated. A random direction
adjustable, is selected to proceed along, away from 0. A

point 1 along the chosen direction is selected,
Step 2: Use Cramer's rule to approximately nearby 0, and the corresponding value of -F

determinec( and Y) from evaluated. If the value of -F has decreased at
experimentas transfer functions. 1, select point 2 at twice the step size of I
Consider the values of A to be from 0. If point 2 is still lower, select a
accurate enough and not Aeeding to point 3 at again twice the step size. Suppose
be adjusted. point 3 yields a higher value -F than 2. Then 1N

return to point 2 and select a new point at one
Step 3: Employ a novel random walk method tenth the current step size. By continuing in

to minimize the difference between this fashion until the step size effectively
the analytical and measured vanishes, a point 0' is found at the minimum
transfer functions by adjusting along line 0-3. From 0', another direction is
7s"Ms, and the O's. chosen at random and the process repeated until

-F ceases to decrease. Figure 2 shows a flow
2.6 Random Walk Method for Finding Extrema chart of the process. .

A customary method for finding maxima is
the gradient method which requires determining It may be seen that this method has some of
the direction of maximum change of the the characteristics of the method of steepest
function by evaluating derivatives with descent, but it is more efficient in that the
respect to its independent variables. One gradients in n-dimensional space need not be
proceeds along one direction, or gradient, evaluated for each step. In either case, a new
until the function ceases to increase. At problem arises when a large number of extremathis point the gradient has changed and must with insufficient magnitude to satisfy the
be recalculated. By repeating the process success criteria are present in the space.
until the gradient becomes zero, a local Both methods will stop at a local extreme near
maximum is found. To find a minimum, one the initial starting estimate and proceed no
needs only to find the negative of the further. One approach is to vary the initialmaximum. starting point throughout the n dimensions

until one that yields an extreme of sufficient .

Because of the amount of computation, in magnitude is found. This can quickly become
derivative determination, a more efficient unmanagable as n increases. One might imagine
method is to proceed along a random direction a 10-dimensional analogy to finding the bottom
without determining the gradient. It can be of a well in a plain of rolling hills. An
shown that the expectation o- the change is in approach is proposed here which seeks to tunnel
the gradient direction and the Partial from the bottom of one trough to the side of a
derivatives required to determine the gradient deeper one. When a local minimum is reached,
need not be calculated [3]. the procedure begins to evaluate the function

in each independent direction, holding the rest
constant until the function decreases. At this
point the Random Walk is repeated, yielding a
lower extreme than before. The large number of
local extremes, which causes the problem, is an

-FeMAX ai to theftnneling procedre bnd deeperio i
. aid to the tunneling procedure by making it

the space.

The tunneling procedure has been applied to
the mode shape modification described above and -
found to perform exceedingly well, Transfer
Functions hav3 been optimized to match
experimental data wherein the differences are
indistinguishable within the plotting
resolution, when steepest descent procedures N
have failed to make a distinguishable
improvement using the same amount of computer

Figure 1. Random Walk Method resource.
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2.7 Orthogon~lity of the Adjusted (fode SI~apes

I -t-LO.ISS A'E Once the modal frequencies a and m~odal
I CFAAJT FAT.*1 damping factors nave been modiflid to fit the

A significanit maasured data, at the candidate
*1 ~-points in the frequency regions resonance,

fI nII&w:I STEP SIZE S TO SMALL VALUEI these values are considered satisfactory
without further adjustment. The mode shape

S values at the candidate points then yield
.0 correct stresses at those points, and these
"~ *VETSO.TCTIOOTEcan also be left unaltered. The mode shaoe

values at other points of the structure, if
left as calculated by the initial

IS finite-element model, will violate the
,ISL~AOT TS~C~rSTTorthogonality properties of normal modes when IQ
~~VcSAOS71combined with the adjusted mode shape values*i

at the candidate points. Figure 3 shows a
TIES pictorial example of the process of adjusting

mode shapes for orthogonality, while
.0 preserving the correct responses at the

TALLUTTOLAS
T

aCSTV ftcandidate points.

A omCNIN ON .AFIRST MODE CALCULATED FROM

T'
0

T VINITIAL DYNAMIC MODEL

TASOSIC(A) C11 MODE SHAPE GIVING CORRECT
(A) RESPONSES AT CANDIDATE POINTS

FIRST MODE CALCULATED FROM~jINITIAL DYNAM:C MODEL IT

I FAILED Ol___ CI ORTHOGONAL MODE GIVING CORRECT
,STO E__________I RESPONSFES AT CANDIDATE POINTS

SET cwlOOIE.

Figure 3. Mode shape adjustmnt process I

01 Ta RA ,~ISEDTTLE IA OE A I Let the modal values of all the modes be

ASOSTOTEbeen ajse.and thos tihic - ' retin tpq
.RINIM O SOF TE All . A 1L *01 V4

IATLS0004T ICTO as frtcalculated frmtheaprxmt
AVIMO TEVLEISTTEASIOfrtro

OHTECTIOS VIC.AHS finitfjelement model. Consider the shape o
I AT IH IREC*. Ithe s mode, which can be rearranged and

partitioned with submatrices ~~I andfo ,the former having adjusted values, and Mh '

IESALITJs) 5  (26)

L. 1. wE ."At5(.0E ' The Property ofOtooaiyrqie

s 10SIT [M] 10s = [1] (27) I

151 OMME UT SIS.If the modes are normalized to mass the
IRS, property of orthogonality requires:

r. T : AT]I A y A'1

from which we obtain the matriA equation:
Figure 2. Flow Chart of Random Walk
Optimization Procedure with Tunnlin . N YA )O A' y In0,' A (9
to find decreasing local minim A0 I~AN A (9
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It should be noted that ll is the only 3.2 Description of Test Methodology

vector whose elements need to be adjusted to The test system used to excite tl,e specimen rih
make both sides of Equation (29) identical, or and oather transfer function characteristics is

h nearly so. This again can be accomplished illustrated in Figure 5. The exciting force
using the Sylvester-Brooks Monte Carlo method. p;oduced by the small electrodynamic shaker was

measured by a force gage, and the response was
Most structures act as low frequency measured by a minature accelerometer placed in

filters, i.e. the dynamic response of the turn at all the selected test points, as well
structure to a coiplcated frequency forcing as by several strain gages, measuring the
function is significant only in the surface strain in the circumferential
neighborhood around the modal frequencies of direction. A digital stepsine system was
the structure, which are few in number, developed to measure and store the
Suppose for example that tl,ere are three acceleration, strain and force signals for
dominant modes. Hence we can adjust mode I stepped sine-wave excitation [5,6]. In this
first for orthogonality - Equation (29) - and system, the step interval and the dwell time at
then adjust mode 2 to be orthogonal to mode 1. each frequency increment, the time for response
Next adjust mode 3 to be orthogonal to mode I. stabilization at each step, and many other test
A further refinement is to make mode 2 parameters could be selected at will. A
orthogonal to mode 3. It is thus seen that schematic of the STEPSINE system is illustrated
this is a feasible method to adjusting the mode in Figure 5.
shapes for orthogonality.

3. ILLUSTRATION CF THE METHOD (EXAMPLE) .CC.ROW.TA

3.1 Selection of Test System _ .c o.

In order to demonstrate the application of / t_, , I .-
the general analytical approach described in
section 2, a suitable structural system was A 0-

selected on the basis of timely availability. 1.11 C--.1

The system consisted of a non-uniform
cylindrical steel ring of 203 mm (8 inches) I Souter diameter, 127 m (5 inches) inner
diaeter and 102 m (4 inches) width. !he
system was being tested in the process of
develepment of a high-frequency test wacin..
[4], and considerable transfer functic- &r.-
modal data was available. Te syste,, Yas ideal
for the purpos _ of verification of the .gure :. z'nematic of STEPSINE test system
approach, being complex enough tto e-t
available finite element and midal anal)sis 3.3 te::u,.,d Transfer Functions and Mode
capabilities, yet not needlessly ltrge with .Shap- " -SDe.,:.nt and Strain
respeLt to number of modes. The test specimen
is illustrated in Figure 4, show, . the a - neasured displacement/force
measurement points for accelerometeurs and trar .er function is illustratea in Figure 6.
strain gages. The specimen has severi; -7ots 0.:t, easrements were made by moving the
cut as indicated, leading to some asy,, :ry of acc!eroameer around the ring at successive 15
che dynamic behavior. The ring was supported Jeyree increments in three axial planes.

Major modes were observed at about 2820 Hz (2
on soft elastomeric pads (IsomrdeR ) in a nodal diameter synmetric mode), 4140 Hz (2
heavy fixture. nodal diameter unsymmetric mode), 7480 Hz (4

o .. . nodal diameter symmetric mode), along with .
minor ones at 2980 Hz (2 noddl diameter
slmmetric niocie, doublet of that at 2820 Hz),

" 3500 Hz (doublet of that at 4140 Hz), 6000 Hz
( nodal diameter unsymmetric mode) etc. The
minor modes were not strongly excited because
the excitation point (0,0) was near a nodal

, line for edch mode, but enough response could
.... \-. -, be generated to define the mode shapes "Cr"

I reasonably well. Figures 7 and 8 illustrate
- ., some of the observed modes.

Stra-n measurements were made at 60 degree
angular increments in one plane (plane 0,) the
plane o4 excitation). The number of strain

Figure 4. Test specimen with loading and gages was limited because of their finite sizeand the need to keep the strain gage wiring
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450 KZ

- 0EXPT 4157 HZ

-110 
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0

U-120 0 o 0 0

7- 
\ TATIONA.

0-30 9
driving point I .'-

-140 Figure 8. Measured second mode (withI I="

unmodified FEA results)

0 2000 4000 6000

FKOEUENCY. HZ L
Figure 6. Typical measured compliance

under some control. The strain gage " _

measurements were made for each gage in turn, -so0

using the output of a strain-gage bridge to 2,C

give a calibrated signal. Figure 9 shows a -:
typical strain-compliance frequency transfer aL -?o
function. The high noise floor for the strainV
signals was annoying, but could iiot be removed
at the time of the tests. However, the
response near each resonant peak was well 

°0

defined and sufficient for the purposes of this -

investigation. Figure 10 shows some measured -go

strain modal functions for the firn Imajor"
mnor".

-100-4

-sir%  11 I - =

0 200C 4000 6000

I"I FHEOUENCY. Hz

Figure 9. Typical measured strain compliance

\. .... 3.4 Demonstration of the Dynamic Model
______ ...... Modification Procedure

".--L . The Experimental High Frequency Material
..... l' Testing Device was selected as the structure

" '44 to use for demonstration of the dynamic modal
E "' _._- .modification procedure since it oper.,tes athigh frequency and requires complex J

dimensional analysis techniques. The device
' ," - .- ,described previously consists of a 102 mm (4 V

- . inch) thick steel ring, approxim"tely 203 ma
- " I '"- (8 inches) outside diameter and 127 m (5_ . .. . ".:-J" nches) insiae diameter, with four 51 mm. (2

Figur 7. ' "inch) by 13 mm (i inch) slots assymetrically
Ilocated. The Finite Element Model, shown in

Figure 11, consists of 20 noded hexagonal
elements, comprising 2562 degrees of freedom.
The less complicated 8 noded hexagonal
elements were first tried, and found to )ield
an unsatisfactory estimate of even the first

Figure 7. Measured fundamental symmetric natural frequency at 2822 hertz. Clearly,mooe (with unmodified FEA results) many of the complexities of mdern day
analytical technique are present in this
example. ~
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The Transfer Function (T.F.), relating the

/8 11) to displaceent at the same location, was
I chosen for this example. Figure 12 shows a

2 I' comparison of the experimentally measured
' transfer function (from Fig. 6) versus the

ANGM STAION parameters used for the analytical function
were the unaltered first eight analytical
natural frequencies and mode shapes, plus the
initial experimental estimates of the damping.

~mgr / w~,,$Pf Table 3 lists the parameters for the first
CIRCIAOEENTAI. TRAI ~ .analysis approximation.

N A

Figure 10. Measured strain modal function for
first syimmetric mode (with unmodified ~ .

FEA results' ANALSIS
f .00

The dynamic model modification was *OI'l

performed a-; described in the detailed
%.discussion of the procedure. The finite

element normal modes anlalysis was performed
using the qualified MSC/NASTRAN solution 3. A 1
DMAP alter was written which directly saved the
modal matrix in OUTPUT4 format for subsequent P5
direct access by the modification procedure

'Icomputer program. The initial finite element [O
model, using 8 noded hexogonal elements, was -
found to be inadequate for realistic "'onc VOnc 3000 3500 .000 .seO
modification. Therefore, the idealization was
repeated using 20 noded hexagional elements, V
totaling 2562 degrees of freedom and yielding Figure 12. Comparison of unmodified
Pesults satisfactory for use as a starting analytical transfer function
approximation for the modification procedure. with experiment
Table 2 compares the experimental and
analytical results for the first eight modes.

TABLE 2. COMIPAI1SON OF EXPERIMEHTAI. MODAL R'ESULTS ITH THE
APPROIATE A.'KALYSIS

Node Expermental Analytical Experimental
Numaer Frequency Hz Frequency Hz Pedal Damping

1 2850 2863 0.0014
3 3495 391

5 5957 5942
6 70-11 7113-

4- 7 7486~ 7493 O.0041
6 8034 760S

' ~ 'N.TABLE 3. 019)ROYEO kAALYTICAL TPPMFERP FU?.CT.IN PAPAHCTERS

No de Frequenc HZI M14e Shape
kaber H. Damping a* !.F. location.

1 2863 0.0014 4.451,
2 2 9K 0.0014 -. 1981
3 320i 0. 0)1 4 .0015689
4 3979 0.0DoI1C 5.623
5 04 .00!0 -. 2119
6 7113 0.O010 -8;0

17 7493- 0. ON: -4.360
8 705 0.0041 -2.736

Figure 11. 2562 Degree of Freedom Finite
Elemrent model of Experimental
high Frequency Fatigue Test machine The first step in adjusting the analytical

model was to estimate the effective modal I
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parameters from the experimental transfer

function that was being matched. Since the
experiment was performed at discrete
frequencies 20 hertz apart, a fitting procedure
was needed to interpolate for the actual
natural frequency and apparent damping. The 3 A%,,

point fit described in Section 2 was used to
determine the parameter estimates listed in
Table 4 for the 2 dominant modes (first and " .
fourth) of the response.

*Next, the estimated experimental damping
and natural frequencies were substituted into
the analytical model, leaving only the mode
shapes to be corrected. The Random Walk Hole
Seeking procedure described above was used to ,o
determine the combination of the eight
parameters best matching the analysis to the
experiment. Figure 13 illustrates the 3-.A

improvement realized. As can be seen, the ,.,OEC,.,
agreement is very good in the area around the Figure 14. Comparison of modified analytical
two major responses, which is the area of
interest. However, it is also seen that the N
modal damping for the second major mode is too
low. The next step would be to add the modal 4.0 CONCLUSIONS
damping to the list of parameters for
optimization and repeat the procedure. The main conclusions of the investigation
However, this would increase the cost are:
significantly since changing the damping forces
a recalculation of the complex admittance at (a) A dynamic model for predicting failure
each of thousands of tries in the Random Walk of a structure has been outlined, which needs
procedure. By estimating the needed change in only to represent the true state of s, ises at
damping from the plot, one can effectively the structural location where failure occurs.
improve the bandwidth characteristic for each It can represent the rest of the structure in
mode without resort to a computer algorithm, an approximate manner. See Figure 15 for a
and then perform the optimization of the mode flow chart of the approach. T
shapes as btrore with the new damping estimates
fixed. Figure 14 shows the final result (b) A procedure is devised to find
obtained in this fashion. As can be seen, it candidate locations which include the critical
is suitable for use in the most precise location. Subsequent dynamic analysis
analysis. Table 5 shows the final analysis determines the location of failure.
parameters used to generate Figure 14 and the
percentage changes in the original analysis (c) Displacements, accelerations or dynamic
parameters required to effect the change. The stresses at critical locations of the structure ,
final model agrees quite well the experiment can be used as criteria for the modification of
without major changes from the original the dynamic model from measured test data. The
approximation. number of load application points, and of

candidate structural points, determines the
minimum number of lead/strain measurements
required to define the model.

* S (d) It was found, by a Random Walk
Do- approach, that the revised structural mode

shapes would be perturbations of the originally

"o calculated mode shapes, and yet preserve
orthogonality relative to one another. More -

importantly, they produce the correct stresses
at the critical point of the structure under

9any given deterministic or random dynamic
loads. The essence of the Random Walk approach
is illustrated for a two dimensional case in r -W

,4o Figure 16. A Flow Chart is given in Fig. 2.

(e) The procedure has been proven and
w 7c 3o mo wo tested by analytical and experimental

" ' "c ., evaluations performed on the structure of a
Figure 13. Comparison of analytical and prototype high frequency test machine.

experimental transfer functions after
modification of analytical mode shape
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1. Transfer Function

These functions measure the dynamic strain
and stress responses, as functions of frequency
at one location of a structure, as caused by a

.EAW.,<of, Of %Tmuc-harmonic input of force or acceleration at
another location of the structure. Let the
stress or strain response as functions of time,

,.,01o t. be denoted by O(t), the output; and the
force or acceleration by 1(t), the input. Then

,._ , (XI I0, tle transfer function, H(0,' is defined
- ,thematically as
N(L1) =£ [O(t)] (1.1)

E [(t)]

w here. is the Laplace transform with all the
initial conditions of the system equal to zero.

.. Stress! Strain and Displacement
Relationship of an 8-node, 3 Dimensional Finite
Eleiment.

Consider a 3-D finite element inside athick ring as shown in Figure 17. 'e wish to

obtain the expressions for the stress and
strain at any point inside the element as

, ,..o..,,o functions of displacements at the 8-nodes ofI -" the element.

Let X1 ,X,, X and r r, r denote the global
Figure 15. Flowchart of failure prediction and nlturg] cordinate s stes, respectively,

as illustrated in Figure 18.
approach. The interpolation (or shape) functions of the

nodes are given by
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= (1/8)(l+r 1)(I+r2)(I+r3 1

N(1 (1.9)

N(3) (I/8)(l+r 1)(l-r 2) (1-r3  I
() 3()/8) ( 1+r)(1r) (r 3)  [ r3] ( 0

= (1/8)(1+r )(1+r 2)(1-r 3) (1.2) From equations (1.6), (11), ano (1.9) a
mathematical operation yieldsN(5) =(I/8)(l-rl )(l+r 2)(l+r 3) f( [B] ful (1.10) "

N(6)= (1/8)"(1-rI) (1-r 2) (l+r 3) where
S(1/8)(1-r)(1-r) () (2) () () () () (

N 2)(1-3) ful 1 "2 ' UI U1 3 .... IU2 3 i
N(8) = (1/8)(1-r 1)(1+r 2 )(1-r 3) and the strain displacement transformation

matrix;
The structural point in question will then 

r o o

have the global coordinates (X , X, X . As 57 0--

an example, the X component iX giten Ry the
following gxrs~n 2y the

aNr--X (1) 1 1 0(k)1 = (~I1+N(2)X(2)+ .. +N(8)X(8). (1.3) 0 0 3i ..

where, X( )  is the X I component of node (1), B- = ... , ) , (k),

etc. 1 jar(ja k

Using the concise tensor notation, the 0 -ij, t2 -
coordinate components of the structural point
are written as: -1 aK(k)  j k)

= N(kx(k) (1.4) (l1 .12)
and the displacement components as:

(k) (k)where the full [B] matrix has 6 rows ano 24

u = N(k)U(k) (1.5) columns, and its e|e-ents are written inl tensor notation, thus

with i =1, 2, 3; k = 1, 2- - , 8. .-a-1 - -1 J -1 a x c ) + ; k ,) ( .1 )

Now an element of the strain vector, r13i t aa -r3)

11 22 332 2423 (1.6) The stress vector (in global, rectangular
coordinates) is

is given by

IL.. u -(11 22 33 '12 '23 011 (2.14)
La This can be derived from the strain vector by

Derivatives using global coordinates as the stress-strain transformation matrix, [C],
independent variables in terms of natural obtained from the theory of elasticity. For
coordinates take the following form: an isotropic material, we h.ve:

XI Xr 2  X3'

L 'X ;)2 -3 ':

) [7 r3  3  r3  3O

where the square matrix is called the Jacobian 0 2,; A
operator ,.atrix, [iJ. Hence we obtain
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where E = Young's modulus and V = Poissor.s
ratio.

The stress vector is then given by: %

which relates the stress state of a point(e.g. the center or a Gauss quadrature point) "W

in the finite element to the displacements at
all the nodes of the element.

3. Stress and Strain Transfer Functions • ,

Consider a piece of structure such as the
thick ring in Figure 17, excited by an
external force f(t) at a point of application.
The dynamic stress ano strain at a chosen
location (enclosed by the 3-D finite element) SPATIAL OIzkSI1O,

are being investigated. The dynamic stress
can be harmonic, transient or random. For all Figure 16. Two dimensional random walk
of these cases if the stress transfer
function, HW) (the stress response as caused procedure. kN

by the harmonic force, f(t) = e4)ti is found, It is seen that the stress time functions are
then the dynamic responses to the different linear combinations of the displacement-time
types of input loads can be obtained, functions. Let a Laplace transform be

performed on each of these quantities and the
Rewriting Equation (1.16) we obtain: result be divided by the Laplace

transform,,L [f(t)] of the force input. It is
{ r(t)j = [G] [ u(tA (1.17) noted that(6x) (6x24) (241) W, Lt

where H M (6B) = (uff(t)] (1.20)

[G] = [C] [B] (1.18) is the displacement transfer function of the
(6x24) (6x6) (6x24) degree of freedom, ui(t), and

is the stress displacement transformation J.[aii(01
matrix. Explicitly, it can be written as: Hlaij(&))= "-.[it (1.21)

is the stress trensfer function of a. (t).
QIj

(t') g11 g12 ..... 91, 24  ul(t) X2, t,;

(1)1

22(t) g2  9 ..... 92 24  u(t) (122)

a/33(t 0 u3(t12(t )  [.()

U23(t) 
.2; s] . (1.23)J(E x ) X; (2-' x 1)

0a31(t)iC61 962 ..... g6 ,24  (8) 1 is the stress transfer function matrix sought.

U (t) A simidar development yields the strain

(8) I transfer function matrix.

u(t) (.)) [B ] Ik- 1 1

u3 (tJ The analytical strain transfer function is very

useful because it can be co-,-Pared with
processed strain measurement data directly.
Given: X1, X2, X3  global coorainate; r1 ,
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r r natural coordinates; 11 lo al t' - P P
cgord~nates (same directions asxrs~t); r = -3 ik 'f' 'k
unit vector in the r directi n; V unit rThe strain vector is actually a second order
vector in the s direction; n= int vector tensor. 2nd order tensors have nine
in the t direction. components while first order tensors have

three. Only six of the strain components are
Define the strain tensor in the global independent through. In the transforratiu.
coordinate system, X,, X2- X3: matrix [T] the direction cosines P. i are

T [,1 E 2 2 ~ rpresentea by V ri' V s, and V ti* '
-6) 622L 3 12 2 23 2'13] As an example, consider the cylinder whose

Define the strain tensor in the local axis lies along the X coordinate cirection as
coordinates-9,~,~ shown in Figure 21. Cosider a strain gage

oriented at an angle 0 from the Xaxis with t
W fc 2e. 2c 24E normal to the su'-face of the ae and r71 perpendicular to the gage length and parallel

Then: to X. For this example:

til-[T] e} Y 1 =lnd r2  and Yr3 =

£T )2(,~V 1 =0 V 2  = sin(BX, V =-cos(e)

r, (T :(t.IT )2----r i t = cos(e). Vt3 =snB
[J ;-~-- -3 ... 3 ' _ The strain can be rdlculated at any point or

(T y 2I V T''3 direction in the cylinder as long as the proper
--------------- -------------- direction cosines transformation is used.
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coordinates with respect to the global
coordinates XI. X21 X 3' Also:

V r= V XV t

The transformation matrix [T) is derived
using tensor analysis. The transformation of
tensor is peCformed as shown in Figure 20.
The vectors -, e2  e are the basis vectors
of the ccordtAtesys~emX X X3 and define '/ "/

the orientation of this co~rist system.
Also e~ Xe12 . The basis vectors e

-el de ir.i the coordinate system X'. ~*-
x~ ~e the cosines of the angles beweS 9the
p imed and unprimed base vectors be denoted by

P ie i

Thbe primed coordinates can then be defined in
index notation by

Therefore the first order tensors . and kare related by Ficure 17. 3-D2 finite element in v-'c: ring.

Pik Ck 
1

related by the relation -

The econ orer tnsor t-- ard tk 4r
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computation requirements when solving The number of inmependent design
the struotural problem, The method variables oan be redtoed by linking
presented applies the REANALYSIS design variables, This method used in
technique to iteratively reevaluate an 0on unction with REANA'?SIB will tend to
analytical model. The REANALYSIS further reduoe the siz of the problet'
procedure is general enough for an
analyst to use on a large Clas of REANALYSIS FORMULATIO FOR YVALUATI
structural weight optimization problems, FEASIBLE DIRECTIONS
The NASTRAN analyser was Cu led to the
CORIMIN optimization code (Reference 6) A method of free vibraticl
for purposes of illustrating a Space REANALYSIS wan deve3iped at RCA Astr,
Truss example problem, for application tc NASTRA, Th-

formulation of the . 'uationr of motioI
OPTIMIZATION PROBLEM are summarized, Co. sider e mode

formulation of a strut ure giv. by'The space frame structural
optimization problem may be stated as M] (I) + WK] ) - (1)
follows: find a minimum weight design
su h that 1tho natural vibration The size of the ,riginal iass and
freuencies and all struotural design stiffness matrices :efleot tVv degree,
variables remain within spocified of freedom of the model. Modify th
limits. For the case whore geometry and mass end stiffness matrices as follows.
materials are defined, the design
optimization problem can be formulated [MnewJ - [] + WMJ (2
ab:

[K~now] - (K]) I [.KI
Minimize F(x)

The now eigenvalue problem f( this
Subject to system is :

GJ(x)5O j-[a Inew) O'u) * [Knew) fu') - (o) (4)

XilAXiXiu i-l, b

The mode 6a ape Corresponding to the
F(x) is called the objective freqIenoy il #imply given by;

function (the weight of the struoture).
The components Xi of X are independent (u'l - (0uJ '-') (5)
design parameters (physical properties
for the problem considered). Xi and
Xiu represent lover and upper bounds of Subutitutir. (2). (3) t .1 (5) int) (4)
the design envelope for the i th and premulliply by (4u P obtaining
parameter, GJ represents constraints on
frequenoy, Inequality constraints Gj(x)
are the response limits imposed on the (IMgen3 4ufF(AM] IOu]) (' 4

design. For example, the frequenoy may
be limited to the bound fb so the (Okoen] Loui['AKJ IOu]) q'' - (0)
Constraint function is written innormvlized form as;

normtliza for as;Note that ((Mgonl * td,'u ]F,m Ilu 3)
(fi/fb)-l O results in a matrix of m by m size.

REANALYSIS is an iffective .hod
which can be used to estimate ti. new

This problem is an implicit characteristics of the Ltruoture. fter
nonlinear nonconvex problem for which modifioation, using information fro. the
approximate solutions can be obtained, original structure. The proot..ure
in principle, by iterative solution of provides rapid turn-around of design
feasible directions, In actuality, changes to assist "n structural
because a large number of eigenvalue optimization,
problems have to be solved in the
optimiza;,ion process thio may be REANALYSIS uses r~duoed size
infeasible. A more praotisal approach matrioo to reformulat( the system
m"y be to solve approximate eigenvalue equations. The number of moles
problems of reduced dimensionality while requested (m) is chosen ti contain 4o
preserving the esoontial features of the flexibilities important to the des. in
original problem. If the approximate variables. The time ",vings does n)t
1roblem is a good representation of the depend on the numbe of ohanges
riginal problem the accuracy of the in [IV or IM) .0noe Changing

solution will be close to the exact all elements takes the so e reduced time
solution, to reevaluate as the eff.!ot of a single

variable change.
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EXAMPLECPU 
TIRE VAX 11/780The space truss is a frame ?Z01 MI MUTES PRA ZACKS

structure which can be connected to a Initial M~ail" 34.3 402.5 --

spacecraft to carry a payload (Reference7).The finite element model is shown Wit..t 10ctft) N43 31. 9
in Figure 1. The lines represent optimizd 54.3 341.8 2.97
sections of rectangular beams. The (Rglyi sltcA
frame is fixed at the four points
indicated in six degrees of freedom.
The frame supports & total payload of TABLE 2
856 lbs which is represented by

P concentrated masses ia the finite
element model. Concentrated masses are
located at grid points listed in Table
1. A lower limit is placed on the first SUMY.ARY
mode natural frequency of 54.3 hz. The
only other constraints imposed on the Effeutive linkage to a general
design are to prevent singularity, purpose optimization routine completes

the structural lory by effectively
~, -.. ~.,providing iterations on design variables

which will f'.ne-tune the simulated
structure. Fi4gure 2.

.3

'3W

ZMIN W ASTRAN ALGORITHM

-INPUT

SPACE TRUSS YES

FIGURE 1I NASTRAB NASTRAN NASTRAN
ANLSER I REANALYSER PRE-

0311C 1013? C1WqtVUAT'tbWZZGIE?

---

25

942.0 Ib: NiASTRAN I INITIAL
70 IPOST- Ij CNI

392 PROCESSOR DATA

73CONNIN CONMIN ONVERGENC
5501 6 311.1 lbs PRE- OPTIMIZERPRCSSO

TABLE 1

S~C'.
xigimum design variables of Area '-.001
c-4 in have beez imposed. The design
stayed in the feasible region during the FIGURE 2
entire optimize~tion process The full
solution is conp~ved with the results of
REANTALYSIS ! n Tab:.e 2.
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The proposed system can be used to
solve a wide spectrum of struotural
optimization problems. The NASTRAN
finite element analysis code was chosen
as the structural analyzer because of
its widespread industry use. An
application- of the technique to a truss
structure using REANALYSIS is presented.
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Reliability of Structures with Stiffness and Strength Degradation

Fashin Craig Chang, Research Associate

and
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tSThe present paper establishes a theory that can be used to evaluate

the reliability of a generic :lass of nonlinear sstem, especially for
the structural system shows stiffness and strtngt degra daions. Theresponse random process is modeled as a Harkov chain in a random
environment (HCRE). The random characteristics of the nonlinearity of
the structural system is represented by a random process, which is
called structural noise. The structural noise is evaluated only when
the energy dissipation sequences, which is a random environment is
given, The intensity of the structural noise is deterministic it the
structural system is linear. However, for highly nonlinear structural
responses, such as the concrete structures subjected to large
excitation, the intensity of the structural noise changed, and its
Srobability density function is evaluated for the independent case. The
irs t passage probability and mean square response are also computed in

the numerical examples.

1.0 INTRODUCTIONLO INTRODUCTION sDeterministic 
models that were used tosuch a structure of frictional materials, predict the behavior of degradation insucnas reinforced concreteis subjected mto stiffness and/or strength has been studiedstrong random excitations te structure ay extensively. Among these are Taketa and Sozen

undego nelstic deformaiions during certainundergo inela t h ssociat d cli (2], Saiidi and Sozen (3], Sucuoglu et al (4]cycles of loadin ith associated cyclic and some otners [S.63. However, because of tedegradation in siffness or strength', or both. randomness in excitation and the considerableThe exact nature of system degradation is a variation of the system degradation from struc-
function of the structural materials and the ture to structure, the stochastic evaluation of
configuration, and may vary considerahly from the stiffness and strength deterio,-ation becomes
structure to structure. Basically tbe a necessity.
deteriorated phenomenon is due to the exten-Nsion of crack in the concrete, bond deterio- Quite frequently, the excitations of theration, bar slippage, shear deformation, and structural system are not predictable.inelastic deformation of reinforcement. The Examples of such loading sources are earth-most important factor is the opening anid quake, wind, aerodynamic loads, etc. Underclosing cf the crack in the structure that these types of excitations, the structural res-
alternate between compression and tension ponse apparently behaves randomly. The randomdu.n the response cycle. Thus. the opening characteristics of the loading sources togetherand c osing of these cracks may eventuaity lead with the random system degradation lead to theto a deteriorated stiffness and strength. As a dcsire of a coherent damage model that can beconsequence, energy is dissipated through the used to assess the reliability of such system.
degradated hysteresis. It has been experimen-
tally verified by Ju et al [H) that the rate of There are several works (7,8,92 studied the
degradaticn is related to the energy dissipation random vibration of the degrading system.
through the degrading restoripg hyseretic loop. tr i r syste m

retr0 y rtcl~~ However, they either consi ered only the random
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characteristics of degrading system as a nistic Lehavior of system degradation. The
random variable or didn't consider the random- rules of Q-hysteresis are sumarized in Figure
ness of the system degradation. In practice 3 [3], in which k is the initial stiffness. '

the ranlomnees of the excitation, together with The unloading stitfness k. is determined by
the randomness of the system degradation, will
lead to the randomness of the deteriorated (
restoring force to be a random process which km = k, ' y=0.4. (2)
we refer as structural random noise. The char- 3max
acteristics of the structural noise will
discussed in Section 2. It is noted that the the parameters ki,

t i,.. .S in Figure 3 define the ruleslof load-
It is noted that the prediction of reli- ing, unloading and loading reversal. On a

ability and assessment of damage depend upon simpler level all these parameters can be
the proper modeling of such structures, taking assumed that they do not manifest any random-
into consideration of the random characteristics ness. However, on a more realistic level, all
of the materials as well as the excitations. these parameters can not accurately describe the
Therefore, the present paper establishes such a origional behavior of system degradation. More-
model that can be used to predict the reliabi- over, due to the material randomness, even two
lity of a generic nonlinear structural system, identical samples can not yield the same hyste-
especially for those show stiffness and retic curve as shown in Figure 2. Therefore,
strength degradatio- the error that between real behavior of system

degradation and the model we developed, together
2. FORHIILTION with the random characteristics of the material,

lead us to the realization that the hysteretic
The nonlinear system to be considered restoring force must behaves randomly.

herein is a single-degree-of-freedom (SDF) Further, in view of the fact that the
system, as shown in Figure i with the governing restoring force is a function of the random
differential equation of motion displacement response the randomness of the

hysteretic restoring force must be time'
m j + c j + R(j) = f(t) () dependent. Without loss of generality, the

hysteretic restoring force can be rewritten as
where m, c are the mass and damping,
resectively; f(t)..is the external random R=R(a1 ,... a6) (3)
excitation, , j, f are the displacement,
velocity and acceleration response of the stru- where aiki, P1,...5, a6=. By using the
tural system, respectively. R(F) is the system
hysteretic restoring force. In this investiga- Taylor's expansion R can be expanded about the
tion m, c are assumed to be deterministic and means of its underlying random parameters to
constant. Further, it is assumed that f(t) is a obtain
band limited zero-mean stationary wnite noise 6 3R
with constant power spectral density ff, namely, R = R(p ,.... p6

) + L (a-Pi ) +
6 6 i

E[f(t)f(s)]=ff6(t-s). The behavior of the sys- + I--- KK (a -Pi)(a-Pj a2R +
ten hysteretic restoring force for system that 2 = j=i
shows stiffness and strength degradation has
been studied extensively. A typical behavior = R(pj I  + N( i ,.. E d
of such hysteretic loop subjected to monotonic
increasing loading is shown in Figure 2 [10].
Among those system-degradation hyzteretic where pi=Etai, i=ii-pi, i=1,.. .6. It is
mosels, the Q-hysteresis can reproduce the
behavior of system degradation in a simple noted that the derivatives in the above equation
and efficient way. Hence, it is adopted here are evaluated at pi, i=i,.. .6. The N(1i  . )
in the present study to describe the determi- is the generalized structural noise. The

structural noise arises from the uncertainty of
the materials, the errors in the model and the

Zrandomness of the response. Apparently, the
Rjz structural noise is a wide band random process.

Atypical such structurai noise is shown in
mass Figure 4. According to Reference 1111, the

f(t) structural noise can be approximately assumed to
be zero-mean with less 1 percent error.
Mforeover, from Figure 4 it can be seen that the
structural noise indeed shows the property cf
zero-mean. Substitution of Equation (4) into

Fig. 1; The SDF System. 
(1) yields

m + c + R + N(t) =f(t). )
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Fig. 2: The typical behavior of system degradation [10].
pation as an given condition. In such situ-
ation the autocorrelation function of the
structural noise can be evaluated. According
to the above statements, if the wide band
random noise assumption is made, the autocorre-

k,. lation function can be written as~E[N(t)Nlt+s)iE,
EfH~)N~ts)Id, f(t)] = S(t)6(s).

1It is noted that S(t) is time dependent which
reflects the nonstationary characteristics ofk3 Nit).

Furthermore, if the input excitation f(t)
is assumed to a band limited white noise it
becores necessary that the theory of Marktov
rocess need to be used here. In view of this,

dhe transition probability density function is3 defined as

k P E P(t,C,t+At,y) = P(I(t+At)=y (t)=, Ed).

(6) 
1

Equation (6) implies that the random process at
Fig. 3: The Q-hysteresis (31. time t+At is evaluated with the conditions

that not only j(t)= has to be given, but also
The structural noise N(t) is introduced in the the energy dissipation sequence Ed must be
above eouation and is represented as a function
of tire'For simplicity. According to Reference realized. The energy dissipation sequence Ed,
(12], in order to specify the characteristics therefore, may be viewed as the random envi-
of a random process, the probability structure ronment. Given different environments, the
of such random nrocess must be given. Namely, transition probability that governs the random
the probability density functions of the random evolution varies. Similarly to (6), th: firstpocess up to infinite order must be known. and sccond moments of the random increments

npractice this is impossible. however, the that associated with 1(t) can be defined as
difficulty is alleviated by addin more
restriction when evaluating the structural M(t) t fit E[ I j(t):=i, Ed] (7)
noise. In the present investigation, the res-
triction is made by adding the energy dissi-
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Fig. 4: A typical example of structural noise.
02(t) =im ( 8A)2 I j(t)=C E 1. The evaluation of p(t) and o2(t) are

At, [t ' discussed brief as follow. Let AF=Au+AZWhere u=E[F]. When taking conditioaal
The Kolmo~orov backward equation still hexpectation on tfrom Equation (5), it is

holds if the derivations are followed by Karlin easy to show tha' r
and Taylor [13]. The reason is that the given
random environments didn't change the t C
characteristics of p(t), o(t) and P Hence, [.t) = t) + - E[t expF - (t--0)f(,)dl
from Equations (6), (7) and (b), the Kolmogorov M e - .
backward equation is =0 (12)

P(t, ,t',y,) :(t P(t,(,t',y) since f(t) is zero-mean and f(t?, Ed are

at' p+ independent. Similarly, from Equation (5)
+ -2t z~ ' '- -- 'Y (9)

2 8
2  (T2(t)=

ti t'
where t'=t+At, with initial condition =iM - Ef(1/c)2  dTjdy h(t)h(y) (t'-t)

At-3pO at ft ft

P~t,K,t,y)=6(r-)). (10) *(t'-Y)I f(t)=:,Ed)J (13)

It is reasonable to assume that P is stationary in which #(t)=f(t)-N(t), h(t)=1-exp(-ct/m), where
within time t, t+At if At is small. Based upon Au2this assumption, Equation (9) becomes uses have been made the facts that .im - 0

and f(t) is zero-mean. At-0 At

aP(t,{,t',y) a(t, ,t'.,y) Equation (13) can be reduced further byt
at = 1ilt) ac noting the fact that E(N(t)f(t)] 0 since fit)
+ t a t t is white noise [11),

2 .t pt{t Y (11)

iV aC



-t probability that governs the random evolution
Z varies. The transition probability that

=(I/C)2  lf (-exp(-ct/m))+ tim - (I/c)2  contains random variables are called Karkov
At->O At chain in random environment (MCRE) [14,15!.

t( t).Ed I The transition probability established
ft t above is based on the ass'mption that ;(t) is

continuous. However, in digital computation. a
=!/C )2 ff ( t-exp(-ct/m))2+ tiM I (-/c)2  discretized form is necessary. Also, the

6t1o A t nonlinear characteristics of R(W) and the

t' t' nonstationary roperty of N(t) kake the
ft dcftdy h(,)h(Y ) c-Y)"  transition probability solved above only valid

dithin small time interval. Hence these
conditions necessitate the use of discrctizcd
form of Equation (16). If discrete form is

In the derivation of Equation (14), it is used, Equation (16) becomes
noted that the evaluation of the
autocorrelation function of the structural
noise uses the fact that the realizations of [ P(n, ,n+yy,S) P
the energy dissipation sequences have been n
given. In other words, it is difficult to Ed ,"" E
specif' the characteristics of the structural
noise without the givet. random environment. i E
Apparently, N(t), and Ed are not independent. It is noted that io, ... n-, are also putted

As matter of fact, the power spectral density into the given condition since the future may
S(t) is a random variable at time t and its not independent of the past for this case.
value depends upon Ed. Carry out the integration For more detail about the past may not inde-

pendent of the future, a completely discussion
of Equation (14) yields may be found in Reference [i].

U2(t)= (1/c)2 (4 fflt)I, i-exp(-ct/m)). (i5) The n-step transition probability is given
by Equation (18).

It is noted that 12(t) is also a random W ft
variable at time t since it contains S(t). P I P(Fn+-,=y i Ed)]

Also o2(t) approaches to(l/c)2 ( ff+St) as n-8"ti. = o 11 rJ 118)

Now the solution of Equation (11) can be
solved easily using the Fourier transform if
p't) and o2(t) are given by Equations (12) and vhere P., j=1, ... n are the transition
(iS), reapectively. The solution is Gaussian y usin i o and s asdistribution with parameters C and V; namely, probability at time step j, and P0 is toe

P(t, ,t',y,S(t))= initial probability distribution of ;o" The

=P(f(t+At)=y (t)=C, Ed) = roof of Equation (18) can be easily derivedd)y using induction and is demonstrated as

<D n=O, this is trivial.
where %ii> Assuming true for n=R, namely,

V=(4/c) 2 (ff + S(-) (J-XP(-ctiM))+ n
Ed)4 T P..+ -2 (,-exp(-2ct/m). proabliy J=

<iii> For n=k+1, then
It is noted that the transition probability
given by Equation (16) contains a random I P(tk+.=y 1 o, E d =
variable. 'This means that the characteristics
of the transition probability is randum and its =EL P( z Io Pk+1  Ed
value depends upon the given condition of the d d ,
energy dissipation. This satisfies the =E1 Pk+i o, Ed =

origional assumption which states that given
different environments, the transition

.N



Pk+i P( k+r q 1, Ed also Markovian. In such case, the one step
transition probability which is given by

q k+i Equation (7) can be rewritten by using the law
P .TP of total probability.

r 0 lit * P(i,(,jil,y,Sj)=

The last equality is based upon the result of =* ( P(S P(S

There are two cases can be considered 0 0

here. The first case is that each the Sn is= Z ... P(j, ,j+i,y,S,)

independent. For such case, the structural S S S
response is then a random nrocess moving in j-Y 1  0
the average environment. The mean of the S. PS S S) (22)
n-step transition probability, in this case, (S Sj-i ) ... S S o
is obtained by taking expectation on both
sides of Equation (19) yields

n where S in P (j,W+ S is a given.
E[P~n)= E(Po] IEP9 deterministic value. If we let

where E(P i is the mean transition probability i -' 1..) 9i i =1, . (23)
at time j. This is a special case of HICRE.
In other words, (t) is a nonstationary Markov and
chain with one step transition probability

tepI P(S) go 8. (24)
EIP . 0 =O

It is very interested to note that Then
E[P(n,1,n+i,y,Sn)] is still a valid = P

representation of a probability density j
function, where P(n, ,n+l,y,Sn)] is given by = PtiJ'J+1,yS.)]-8'. (2S)

Equation (17). The reason can be seen easily 3

ynoting that The n-step transition probability then can be
evaluated based upon Equation (18).

[y P(n, ,n+l,y,S n) dyI= 3. H JCAL EXAMLES

I' Er P(n, ,n+1,y,Sn)3 dy 1. (20) Case (1): Sn, n=1,2,... are independent.
IT In the case of Sn, n=1.2..., are inde-

By using the definition of the expectation, pendent, the most important term that needs
Equation (20) can be rewritten as o be evaluated is the probability desnisty

function of Sn, n=1,2,.... However, as

dyjf P(n,(,n+i,y,Sn) P(Sn) dSn = mention earlier, Sn, nzi,2,... depended upon "
n the energy dissipation sequence. in other

fS P(Sn) dSn f P(nK,n+1,y,Sn) dy (21) words, S. can not be evaluated unless some

n fy energy dissipation sequences are realized. In
order to establish the energy dissipation

where P(Sn) is the probabiiitv density sequences, the Q-hysteresis has been used here
to generate such sequences and are shown infunction of S at time step n. Equation (21) Figure S, where the number of samples used

C n Tiue5 heretenme fsmlsueare 130. The mean input datas for the
can be used as a tool for the numerical Q-hysteresis are given in Table 1. The random-
computation and will be discussed in Section ness of these datas are assumed uniform3. between p k O.OSp where p is the mean of k1l, kZ

etc.
The second case is that Sn, n=1,2,... are
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Fig. S: The energy dissipation sequences.

where
Table 1: The Input datas for QK- o ;

7.33E+O6(N/m) 7.33E+OS(N/M) .4 ro = C J4-2

In Figure 5, E is the normalized energy 3J = -J3 (j-l)t, j--, N

dissipation. :2 o on = S1.24 ,z

E Ed / Es  A u = x/23

where Ed is the energy dissipation obtained and Ol, j=-N ... N are the random variables

from the Q-hysteresis .nd Es is the energy with ,mifor. distribution beteen (0.20). The
constant Dower spectral density of fit) is

dissipation due to static load at failure computed asily if f(t) is given by Equation
point. If a bean to column joint is used as (26). the result is
shown in Figure 2, ES=3.921SE+06(N-m)
(34 12 k-in). The data is obtained from Ref. ff = Zj

[17]. The mean and standard deviation of the rate of
enrgy dissipation e, as shown in Figure 6, are

It is noted that in order to obtain the computed froB sasples and the results are
energy dissipation quences, the random input
excitations are generated by using the 1 .0261 (rad)

following formula. 00 0.09152 (rad). (27)

N

f(t)=V C. Cos (W-t-0-) (26) After the energy diSsipation sequences are
determined, the probability density function

J=-N of Sn, n1.2,... then can be -valuated. It is
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avcro-e of EZN 2(t)] is evaluated. It cal, be
seen fron Figure 7 that El[N(t)] is inversely
Droortional to tine. This is because the
structural systez shous degradation in stiff-ecss and strength. The linear rgression line
can be represented by Equation (2).

t = C. - CS (29)12

=I2ea e hvhere CI=11.6957, C A=0.02737.i ~;=1 .026,A- ,

________._ti- To see how energy dissipation is related
to the S(t), a configuration of E, S. and t is t0A. ig.cor~struclted and is shoun it. Figure 8:

enerpy dissipation. From F-cure 8, it can be seen that given E=E
Poted tha t S. is the power spectral dentsit T oi the ossible values of Sn could be S

11 . S 2 ,

IM(t) and is related to the L-an square of etc.. since the randlo2 cip~racteristics of
, .strucztural Poise by" the e nergy dissipation. Each possible value .-

E[-f)IA & )(8 of (i) ur,,. ill ha~e probability

if 11wt) is a band-himited white noise. There- 2 i=12.._ and satisfies the
tore, in order to obtain Sit) the E[H 2(t)] is noriaization conaitioV
also evaluated b Qhyseresis and

qu_ T result is shown in Figwe
7. (D)

In Figure 7, it is noted that a linear regre-
Ssion line which can be used as an ensenble

4.155
I ..upper bound

I"N

ILIR I- 1 *..

liii

JI.* N

0.0 ,.6

7ig. 7: Th rean square of strixtural noise.IQ
L-z



sM figure 10. Fron Figure 10, it can be seen
that as energ dissi tion increasirr, the PDF
of S b-coms flat. Nis imlies that t-e
uncertainty of the intenGsit • of the structural

"")-. C1C2 S  noise --preading out,. as it ihouid. On the

SOZ I other hand. as L is sall, the uncertainty of
the intensitv of the structural noiseA concentrates'vithin sall rane. it is noted

t from Figure 10 that vhen . = 0. the PDF of S
is a delta function. The reasDn is that when

521 ;E:=O. the system is linear. Hence. the
structural' noise in a random variable rather
than a randoz process. !. such case. the

nE random environbent does not exist. As a
consequence, the ntensity of the structural
noise is a constant, deterainistic valu, as
it shoul. s

Fig. 8: The configuration of E, S(t). I-- first passage proibability for such
case can be coRouted easily since t-.he

According to Figure 8. the relationship .transition probbility provides enough
between S and i can be evaluated easily. "Ibe information to evaluate it. For instance, ifen S dwe assue that the absorbin barrier, or the
result is failure state, is at 1=SO.8 i (2").'then thefirst passage Drobability is comuted "

Cn -E cotO accord --ngto Equation (1). The' result is
Sn C (31) shown in Figure I!. The man square res-

2  ponse is also computed and the result is

'here 0 is Gaussian with Bean and standard shown in Figure 12.
deviation given b Equation (2?). The
cuulative distribution runction (CF) of Sn  Case (i!): Sn- n=1,2... are Markorian.
can be derived easily if Sn and 6 are re- n h ns n . are i n.

In this case, the difficulty is to
lated by E uation (31). The result is determine the trinsition probability 8i .

However, in viev of Figure 7, the randomnessP(Sn'k) of (t) can be assumed that the transitionIle probability 8i behaves like a Brounian mtion

where 8() (C, - C2 k)/E , (33) with man S ,;hich is linearly proportional

to t.-and the st;ndard deviation , which is
___' du. inversel" Dropor.ional to t. The reason is

and W(x) exp(2-u ) du. (4) that froli Fiure ?. the upper bom- and lower2 bound of S(t tend to converge to the nean.
If this assutntion is ade. ,%e can writeThe probability dersity function (PIF) of Sn

is then evaluated by using th follouing S(t) = a + 0 t (3&a)
approximation. 2(t) = o2/(t+i) 2 . (36b)

n==P(- n values of 2, n, 22 can be obtained from
nonlinear regression 1181.

- {tn±~ -ool 'A-O). (3s) jw 3a

The CDF of S for dfferent E is plotted and

is shou-n in Figure 9 by using Fquation (32).
'he PD- of S is also plotted and is shown in

.- :_-. ,--..-. r . r.-. - .'.- ...-.-. ..... -....- . . ... .. r ..... ... *.. .... .
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Fig. 11: The first passage probability of F(t).
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iAccordipg to the analysis in the above W0
~ w1  ~ wt~) ( ~w~t 1  2 11b~ sections, the following conclusion can be made.

i 1) iti)2 ON (1) The advantage of resent investigation isIthat the randomness of the random rsos s%
w. (t,+1)2 tT) characterized b~ a linear differential.370 equation if we reat the structural noise as

an external excitation. This can be seen
)W.(S -a-at )2 easily by taking expectation on Equation (5).

U2 V H iowev~r, restrictioh must be made 'here that
n-2 the strurtural noise can be evaluated by given

the realization of the energy dissipation
whee nisthetoal umer f oin. n tis sequences which nay be viewed as a random -.e
wher n i th totl nmberof pint in his envrironment. Since the given environment isexample, n=i024. random, it will cause the response evolution d

are moving in a fluctuated environment. However,
The results of a, p, 02aecomputed by using if the characteristics of the random enviro-
the above equation. m-ent is specified. the probabilistic

a42 B =-44.6S.87, 02=30948.6 characteristics of~ the response is still
o~442li8,enumerable.

The 9 chain then can be established by (2) The power spectral density (PSD) of the
usin Gassia ditribtio; naelyinput excitation and the structural noisedominate the random, evolution, as seen from

Equation (16). If the IND of the input exci-n~i E.1+1 Sntation sionificantiy greater than that of the
D+1 structural noise. tne probability of failure

- xp.A %n~ (38) will hai depend upon the input excitation.
17n 2 UnThis mcans 1hat the uncertainty of the

n structural system does not play an iaprtant
OereSn I + (n t) (9a) role in determining the proha ,Iitv orstructural failure. On, th other hand, if the

c/(ntt-). (39b) PSD of the structural ncise is significantly
greater than that of input excitation. then

The first passage prbblt n h endominate the p'obability of strucIfa
square response of F(t) then can be computed failure.

simiarl tothe case of independent Sn if the (3) Fros Figure 11, one can see that the case P1
chain is given by Equation (38). The of independent S, and the case of flarhovian Sn

results areo ottea' in .Figure It and 12, res-pechel. o paio bewetecse f didn't show significant difference in either
independint Sn and the case of Harkovian Sn the first passage probability or thte meansluare response of f(t). Hfence, it can be P
is made in Figure 11 and1.I-a ese con-cluded that tile case of indendt "' can
that the results are close,.eue o h optto fsrcua

h reliability analysih if the P5D of the external
excitation is si~nifcantiy greater than that
of the structural noise. flowerer, if the PS)
of the structural noise is greater than that of
the input excitation, the larkovian Lase'should
be zsed since it describes the phenomenon moreprecisely and closely.

Te worY was perfor=ed under a grant f-am
Air Force Ofice of Sc4-rtific Researchl.
-AFOSR grant ?Io. AFOSR-8S-6O8SA. Col.
Lawrence D. Hokanson is the prograz manamger.
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ABSTRACT

This paper explains the dynamic response of an aircraft that taxies over two
arbitrary disturbances, under the assumption that the aircraft can be represented
as a linear, one degree-of-freedom system. That analysis produces the concept of
the BUMP MULTIPLIER which expl;citly and simply determines whether a secord
discrete disturbance will amplify or attenuate the response from a first disturbance.
The BUMP MULTIPLIER also simplifies the understanding and presentation of
the results. While the assumptions are very severe, the resulting formulas can be
very useful to gain physical insight, to guide more elaborate nonlinear calculations
and to plan test programs.

1. INTRODUCTION

The problem of aircraft dynamic response to taxiing and transport aircraft. HAVE BOUNCE also develops
over rough surfaces has been a topic of research for many computer programs to predict the dynamic response tc
years. For the most part, the research has been limited the simulated runway profiles . Other NATO nations
to predicting and/or measuring the dynamic response are performing similar test and analysis programs on
of an aircraft due to the (nearly) random roughness of their aircraft.
the terrain or by wear and tear on runways and taxi- HAVE BOUNCE considers the computer programs
ways. Within the last several years, however, concerns to be validated when they produce satisfactory compar-
have arisen within the Defense agencies of the NATO isons with the experimental results from flight (taxi)
countries about the safety of ai.craft operations over tests. Then HAVE BOUNCE uses the velidated rom-
the discrete disturbances which can arise from bomb- puter programs to extrapolate from the relativeiy mild
damage to the runways. Those concerns also extend to test conditions to more severe operational cases. Since
the dynamic response due to taxi over repaired runways the computer progrars account for the nonlinear prop-
and repetitive aircraft operations on the (potentially) erties of the landing gars and tires, the extrapolation of
yielding surfaces. the results beyond their validated range of parameters

As a result of those concerns the United States Air is alv:ays open to some question.
force instituted program HAVE BOUNCE which per- Because the taxi test programs have proven to be
iorms flight (taxi) tests over simulated (relatively mild) very expensive, difficult to control and repeat and (some-I
runway damage and repairs for several USAF combat times) dangerous, the USAF also created the Aircraft
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Ground-induced Loads Excitation (AGILE) facility which 2. THE ACCELERATION RESPONSE OF A
measures the dynamic response of -operational aircraft SINGLE DEGREE-OF--FREEDOM OSCILLA-
to damaged and repaired runways within the controlled TOR TO A SINGLE DISTURBANCE
conditionb of the laboratory. AGILE supports an opera-
tional aircraft on its tires on massive hydraulic shakers Assume a single degree-of-freedom oscillator, with
and drives the shakers vertically to represent the ver- damping less than the critical value, receives some ex-
tical events of the aircraft taxiin, over damaged and citation over a period of time, but that the excitation
repaired runways. Each (of the three integrated) shak- stops at time t t1.
ers can sustain a static weight of 50,000 lb, can displace t,
amplitudes of 10 in, can impose dynamic forces up to
50,000 lb and can be driven sinusoidally (frequencies
up to 25 Hz), randomly or to follow prescribed discrete
motions. In its first major test, agreement between the
AGILE tests and HAVE BOUNCE taxi tests for an op-
erational A-TD aircraft was excellent.

All three evaluation methods-computer programs,
HAVE BOUNCE taxi test- on operational aircraft and
AGILE tests on operational aircraft-have been domi-
nated by one major consideration-the nonlinearities in
the landing gear. As a result, nearly all of the compu-
tations have been done with numerical time-integration
of the nonlinear differential equations of motion. The
taxi tests and AGILE tests also have been forced to L __ _ _

adopt a tedious approach of repetitive, trial-and-error
test Lases, again because concerns over strong nonlin- For times after t1, when the acceleration response is
earities prevented the consideration of the superposi- decaying freely, the acceleration acceleration response
tion of simple disturbances to synthesize more complex can be written:
responses.

In this paper we contend that the nonlinearities do (t)it>t - e- (tt) {A, sin [w(t - ti) + BI cos [w(t - tl)])
indeed strongly influence the computational and test re- (2.1)
suits, especially the exact levels of the loads obtained, where:
However, the qualitative response and the selection of
speeds, bump heights, and bump spacings which pro- t1 = the time the excitation ends
duce large dynamic responses ought to be predictable, w = damped frequency
for the most part, by simpler linear methods. Nonlin- aw = damping
ear calculations, taxi tests apd AGILE tests all ought A,B 1  Constants which depend ona,w,the excitation
to be preceded by a srbstantial amount of linearized and the in'tial conditions ;'
calculations which can be done rapidly and can yield a h lc i
much physical insight into those conditions which pro-
duce extensive dynamic response. A clever anaiyst may Note that the damping parameter a above is not
be able to find the simplicity and intuitive understand- quite the same as f, the frequently used fraction of crit-
ing in seemingly complex time-histories, which in fact ical damping, which comes from the analysis of a clas-
may be not much more than superpositions of many sical single degree-of-freedom oscillator. The product
relatively simple events. aw contrcls the exponential decay of the damped sys-

The purpose of this paper is to rcview those linear tern, perhaps as observed experimentally. Tie use of
methods, to show how they yield an understanding of the parameter a allows us to refer the damping to the
complex t.me histories and how they can be used to plan observed damped frequency w rather than the fictitious
nonlinear calculations, taxi tests and AGILE tests. The undamped frequency w(,. In the snecial case of the clag-
paper illustrates the principles by treating the response aical single degree-of-freedom c:cillator a f/\i1 -

of a hnear one degree-of-freedom oscilllator as it taxies and ow = wo.
over two successive discrete disturbances, introducing
the concept of the BUMP MULTIPLIER. The decaying acceleration r . onse also can be writ-

ten as.

(t) -- Re-.('-tl) sin [w(t - t,) + j (2.2)

where:

tanrS 1 =B1/A i
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4 We loosely refer to RI as the potential amplitude of the 3. TWO SUCCESSIVE DISTURBANCES
acceleration response. It is an upper bound on the am-
plitude of the acceleration response to a single Utur- Now suppose the single degree-of-freedom oscillator

b The phnse sh'ft depends only on A and B receives a subsequent excitation over another period of
and will therefore be different for various forms of the time and that excitation stops at time t =
excitation.

For small damping (a << 1) the behavior of the
acceleration response will be dominated by the term

sin jw(t - t,) + 011 in Equation (2.2), so we would ex- I
pect its local maxima and minima (extrema) to be ob-
tained from solutions of

However, the term e -a(t"t) causes a shift in the values I I
of time for which the local extrema of the acceleration Ii I j l
response occur. In fact, the third derivative of the dis-
placement (erivdive of the .clerie;n) is "

di(t). I Rew'td.Vj [c1 1  _____________________

dt Rje ~wy 1wV+alCOS+(0+

(2.re If there had been no previous accele:ation respense
where: from the first disturbance the acceleration response to

tan 6 = a the second disturbance would have been:

Therefore, the local extrema of the decaying accelera- .. ~ - t {A2 s [w(t - t2)] + B 2 cos [w(-)
tion response will occur at the values of time for which z(t)2>)1}

w(t tj) = (2n- 1)2 - (01 + 6k); n = 1,2,3,... (2.5) However, because of the presence of the decaying ac-
celeration response to the first disturbance, the accel-

The additional phase Ehift 61 will be small for values of eration response to the combined disturbances must be

damping that are small with respect to the critical value,
(a << 1). Note, however, that the first phase shift 01 (t)> - -aw(z-h} {A, sin [w(t - rj)] + B, cos [w(t - tl )J} +
depends on the disturbance and th-t initial conditions 9>t2

and need not be small. e- (" 2) {A2 sin [w(t - t2 )] + B 2 cos !W(t - 12)1)

(3.1)
We can use these results to obtain an even better For convenience in manipulating the terms in Equation

upper bound on the amplitude of the acceleration re- (3.1) we abbreviate:
sponse. If we plug the above value of w(t - .) into

Equation (2.1) for i(t) we find that the local ex-

trema for i equal: S. = sin [w(-t,) jtrem for (t)t~hC' = Cos It (t - ti)]

R -a[(2n-) -(+i)] 1,2,3... Then the acceleration response to the combined distur-

bances is:

i(t)It>t' = e1 (A1 S + BIC,) + e2 (A 2 S2 + B 2 C2 ) (3.2)

The trick Ls write Equations (3.1) and (3.2) with
respect to the time of the most recent disturbance, t2 .

To that end we write:

t - t I = (t - t2) + (t2 - t)

We need the additional abbreviations:

C21 =

S21 = sin Iw(t2 - t,)]
C21 = COS [42t - t,) I'
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To cbtain- 1  e2eu R2 ;n 1,2,3...

S1 = 2 1,1 + C2AI /+

C1 = cGC2 -- S2521
The accelcration response to the combined excitations We have seen how to find the times for loca' ex-

becom~es trema of the decaying accleration response, assuming
+3e know A,, B1, A2, B2 , aW, tt and t2. However, we am= c2 (AS 2 + BC 2) (3.3) searching for the best and worst possible runway pro-

where: files, so the most critical aspect is to find the values of
A2 = A2 + e 21 (AIC 21 - BIS 21) f2, the time of the second disturbance, which will locally

B2' = B2 + e21 (A, S21 + B, C21) extremize the potential amplitude R2 . We differentiate
Equation (3.5) for R2 with respect to t2 and set the

Following the same procedure we used for the single result to zero to obtain: V
disturbance, the acceleration response to the combined S21 [(AjA 2 + B IB2 ) + a(AIB2 - B IA 2)] +disturbances can be rewritten as:isturbance can e re- -in as:-t(. C21 a(AIA 2 + B1 B2) - (AIB 2 - BeA2)] + a(A2 + B2)e2 l - --

i =t R2e01-(t-2) sijw(t t 2) + 021 (3.4) (3.8)
or

where: a)R2 = 2V 2 + B2.2 (3.5) k,2 in [,,,(t - l) + 0,21 + -- + -C -k2 ,')= :
(3-9)

= -V(A, + B2) + 2e21 ICu,(A, , + BB 2 ) + S2,(AB 2 - B1A2 )l + 41 (A2 + B2 ))

tan B B; - 21 (AS 21 +e BC 2 1)

as we did for th singl distrbance, we1 canhifer

R,, + B2'
Equation .5) for R2, the potential amplitude o the

4.(TH BUM MULTIPLIER Bz- BA

acceleration response to the combined disturbances, ; tan ta2 (AeA + BsB) o(AIB - BIAu)
one of the major findings of this paper. Much of the a a t dilubcquent work here will be concerned with finding the The exact solution for the time delays (t-ti) which i-
conditions which maximize and/or minimize (eetremize) cally extremize R2 would require a numerical or graph-

R2 ) ical solution of Equations (3.8 or (3.9), however for
small damping we would expect

As we did for the single disturbance, we can differ-
entiate Equation (3.4) with respect u time to uearoh W(t2 - fl) t% £h -M P; n - 1,2i3... (3.10)

for the times for the local extrema of the acceleration We willngive thinh the t me deliis (o-

the above alue of wt - £2) ino Equatio (3.4) fore a£ u tes he dcetermation sonste tim teirs d02u

resonse. We obtain: t17 an exact treatment in the next Section.

di(t) = i.

(3.6)
whereN

tan62 = a

Even though the first phase shifts are not necessarily 4. THE BUMP MULTIPLIER
equal :01 j 2), we see the same second phase shifts( b, = b) in the tim es for loc al extrem a of the accel- R c d h t R e r s n e h o e t a m l t deration response to the combined disturbances. Those ofthRecayin acleatio resdtposentotae fitds

loca txremawil occr wen:turbance and that R2 represented th-. potential ampli-

W(t - t2) = (2n68- 1) (02 + 62); n = 1, 2. (37) tude of the acceleration response tot c b d
turbances, where in ech case we measured time fromAs we did for the single disturbanc,., we can use the time of the most recent disturbance. We call the

these -esults to obtait, an even better upper bound on ratio R2/R, the BUMP MULTIPLIER, since it defines
the amplitude of the acceleration response. If we plug the etent to which the second disturbance amplifies (or
the above value Of W(t - t2) ino Equation (3.4) for attenuates) the acceleration response to the first distur-
-2(t) tItX,_ we find that the local extrema for :(t) ItX bance. The BUMP MULTIPLIER is .
equal: 1

6 8 
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R2  (A2 + B 2) + 2e2l IC2(AIA 2 + BIB2) + S21 (IB 2 - BIA 2)J + 4,(A2 + 2
= (A2 A2 + B2

(4.1) U
To assist in the interpretation of the BUMP MULTI-
PLIER we add another set of abbreviations:

SB, I!= ;i= 1,2

With this definition, the potential amplitudes and phase
angles for the acceleration responses to the first distur-
bance and the combined disturbances become:

R = lAd 1 + 2 (4.2)

tan 40', = cl
R_ + \/ 2) + 2A 2 (Ale2)Ci(lei) + S2 ( 2 -q)J 4 (Aie~j) 2 (1+4)

- (1+4) + 2(:L ) [C21(1 + f1(2) + S21((2 - C) + ( 12 0 2 (+ ()

:| (4.3)

(2 + (e 2 l)(Sll + (1 C21) (43tan4' 2  1 + (4,,C2,)(C21 - ,IS, )

The BUMP MULTIPLIER becomes:

R2= IA (I+C)_+2(1E21 ) JC2 (i +,1 2 )+S2( 2  + - C2)( 1)2(l +(2)
(4.4)

Note in Equation (4.4) "hat the magnitude effects With this change of variables Equation (4.5) takes a new
are contained mostly in the -erm ;j, 1, whereas the spac- form aec-
ing effects are in the radkal. The spacing effects are C.sin#. = (4.8)
dominated by the terms Vi.

'-21 = sn W(t2 - fl)] where
C21 =coslw ( -t)J = 11+ A (.

C21  2( w~v~ lA I 1 +(2
and those terms are always modulated by the combina- Pin-
tion

Al = A1 eow(,-_,) If we expand Equation (4.8) for smell j., keeping onlyA-21 A 2  irst order terms, we obtain

When we use these abbreiations in Equation (3.9) to a '410'find the time delays 02 - l which locally extremize # C./ rl+-C 2 - C, 24.0
the potential amplitude R2, we obtain

Fhis then is the (hoped for) small correction we use in
JA2 i 1 + 4 ....- quation (4.7) to find the second approximation for the

1,, sin fWN - 1,) + e,'12j+ 0 e delays N- - - ti).(4.S)
where a(I + (1(2) - (2z - (,)

tan 012 = (1+ (C) + (e - e ) s. USE OF THE AVERAGE SPEED

A first approximation for a << 1 for the time delays We have made no assumption of a coDtant taxiwould be: W aemd ov mto facwatt~
speed between the two disturbances; in fact we will show

w(t 2 - tLi) z nr - 012 ;n = 1,2,3,... (4.6) in this Section that the spacing effects re dominated by
the average speed between them.

To get a second approximation we search for small an- If I is the dist:--.- betweenz the two disturbances,
gles f, such that the average speed is

(.1 - (- 6wil 2 - ILl = n"- (t'I + a,,) (4.7) V} = t - t '

6.
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Then we can express the term Amplitude

LW (Under the assumption of similar disturbances, Equation
(t2 - t0 = .__ = A (5.2) (4.2) and (4.3) for the potential amplitudes and phase

V angles become:
The usual terminology for X = Iw/V, based on the in- a b
stantaneous speed, is the reduced frequency. Therefore (

/V is the reduced frequency based on the average R, = I'Al 7 + - (6.1)

speed between the two disturbances. tan =

Amplitude and Bump Multiplier RA -- + F2 A' + 2A 2 (Ai e2 )Cul + (Ae 21)
2  *1

Equations (4.2) and (4.3) for the potential amplitudes
and phase angles, and Equation (4.4) for the BUMP IA21Vi v l + 2(te 21)C 21 + (--e 2 1 )2

MULTIPLIER remain unchanged, except that now we A2  2 .

note 2 e- t + (41CYS21)(S21 + (C21)e21-- tan 'b2 =

S21 =sinA 1 2+ (e 2i)C 2 - CS21)

C21 
= cos

Bump Multiplier

Best/Worst Runway Profiles Equation (4.4) for the BUMP MULTIPLIER reduces
The process for finding the exact and approximate so- to:

lutions for the time delays which extremize R 2 remains R -A 2 [ A1  + A(
unchanged, except Equation (4.5) now becomes: A 1 + 2( A!e2l)C21 + ( C21)7 (6.3)

+2 in( +11) 2 "= 0 (5.3)
I Figures (6.1) and (6.2) illustrate the BUMP MUL-

The first approximation for the time delays becomes an TIPLIER versus i with the damping as a parameter for

equation for Athe special case of equal (or opposite) disturbances at

A z: n~r - 012 ; n = 1, 2,3.... (5.4) constant speeds.

The process of finding exact solutions and second I
approximations for the time delays also remains un-
changed, except that Equation (4.7) becomes

= nr - (1012 + 0.) (5.5)"

6. SPECIAL CASE: SIMILAR DISTURBANCESI i
0 itI 3

We now define similar disturbances as discrete dis-
* turbances that have the same shape but differ only in

magnitude and/or sign. Examples would be the entire i ', "family of infinite ramps or a family of sine waves of 'R\

the same wavelength but varying heights. The asaump
tion of similar disturbances is not a very limiting one.
In fact, nearly all of the profics tested in the HAVE
BOUNCE program and all of the NA TO/A GA RD pro-[
files can be broken down into sequences of similar ramp
disturbances. For linear systems with zero initial con-
ditions similar disturbances will produce similar accel-
eration responses, and when disturbances are similar

:r(I f 2 V 4-
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The major conclusion to be drawn is the dependence
of the BUMP MULTIPLIER on the nondimenional spac . I
ing (or speed or frequency) parameter e.0eee

1 1. SW 1.eee 1.oe
2 2.=f 2.0000 2.o

W(12 - t1 ) W/V 3 3.ff00 3.0W0 3.06*0
4 4.0*0 4.0"O 4.",?0
C, S.085e 5.ete0 5.e*

The spacing of the disturbances, the averagz speed of 9.o1" 6 6.0'S 6.0800 6.000

the vehicle and the natural frequency all combine into 1 0.9%8 0.9937 *.9999
a 1.9963 1.9938 1.9938the one parameter, the reduced freque .j based on the 3 2.9968 2.9939 2.9997
4 3.9968 3.9S4$ 3.9940

average speed. Also, whilte BUMP MULTIPLIER s 4.9S68 4.9941 4.9959L
clearly diiinishes with i for ,significant values of a, the . 6 5.9963 s.9942 s..

values of X that produce the local minima and maxima 1 0.9936 0.9677 0.999
2 1.9936 1.9893 1.9890are fairly weak functions of a. 3 2.9936 2.9894 2.989
4 3.9936 3.9987 3.9887
5 4.9936 4.9890 4.9983

Best/Worst Runway Profiles .3e6 5.9936 5.3 5

e.9905 0.9818 0.991In order to find the times'dlays that locally extremize a 1.990 1.9825 I.82 A

3 2.9905 2.9832 2.997R2 Equation (5.3) reduces to: a 3.99S 3.9839 3.9839
5 4.9;tS5 4.984S 4.064'V

-in + 012) + c = 0 (6.4) 1 .98 0.970 8.992S
A 1.9873 1.r74 1.9773
3 2:9873 2.9785 2.9960
4 3.9873 3.91796 3.97

where S 4.9873 4.986S 4.gg41

tan 112 = a o. S" 6 .973 5.S913 5.9313

The definition of C, reduces to: 3 2.9841 1.9741 1.974
53 2.9841 2.974 2.9240
4 3.4841 3.97s6 3.976]A ]~~~~ s .841 ,s .t

IAI 4.341 4.9768 4.9214
C, = (-1)nea( ' K- *32) L (6.5) 6 5.9841 S.97 5.9779

Tables (6.1) and (6.2) give values of the first ap-
proximation, second approximation and exact solution
for A which locally maximize and minimize the BUMP
MULTIPLIER for the same special case of .- ,al (or I,'

opposite) disturbances and constant speeds. e.ee

I 2.00* I.0000 1.0a00
2 3.08* 230* 3.004000

The major conclusions to be drawn are: 3 3.0es 3.ro0e 3.90504 4."~ 4.o0o0 4.OM)(a) Again the spacing that maximizes or minimizes S S.e9ae SA.M .00se

the acceleration response depends very weakly on the .e.0
1 0.9g69 0.9999 0.9937 (

damping parameter, a, I e.9%8 198 0.993
2 1.9962 1.9M 1.9998(b)the First approximation 3 2.9968 2.9997 3.99394 3.9VA63 3.:99S6 3.9V,6S 4.9M 4.9D^-S 4.9941

nr - 012 r nT - a o.ea 6 S.A63 5.99S5 s.9995
1 0.9936 0.9996 0.9977
2 1.9936 1.5992 1.9992

is an excellent approximation to the exact solution for 3 2.9936 2.9S9 2.9884
4 3.93S 3.9996 3.9986

reasonably sma!l values of damping. S 4.S936 4.9983 4.9693
6 5.5936 5.9986 S.9984

9. e3oe I e.99 0.9991 0.9819
2 1.99a5 1.9984 1.9984
3 2.99 2.9976 2.9832
4 3.99a5 3.9978 3.$970
5 '.993% 4.9964 4.5S845
6 5.99235 5.g959 5.9959

e 9488
1 0.9873 .995 0.9760
2 1.9873 1.9972 1.9972
3 2.9973 2.go60 2.9785
4 3.9873 3.9SO 3.9950
S 4.9873 4.9941 4.S835
6 5.9873 5.5933 5.9933

0.050e
1 0.9841 0.99M7 0.9704
2 1.841 1.M957 1.99S7
3 2.9841 •.9340 2.9741
4 3.9841 3.926 3.9"26
S 4.9841 4.9914 4.97i8
6 S.9841 S-M3 S.9-43
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7. EXAMPLE: THE CLASSICAL, UNDERDAMPED
SPRING-MASS-DAMPER TAXIING OVER TWO A = = Ao-1 _ (7.3)

RAMPS. and the relationship:

We consider the example of a classical, single degree- a= (7.4)

of- freedom oscillator that encounters two ramp distur- Note the distinction between the hypothetical undamped
bances. The disturbances are separated by a distance frequency bte and the actual damped frequency . Note

I and occur at times t1 and tz, respectively. The taxi also the distinction between f, the fraction of critical
speeds V1 , V2 are not necessarily equal at the time of the damping as related to the hypothetical undamped fre-
Sencounters, nor are the ramp angles O1, 2. quency wo, and a which we usc to relate damping to the

actual damped frequency w.

A [For purposes of illustration we pick the fictitious
.undamped natural frequency to be

- , a w t fo=U.,o/2r= 1.0Hz,

Sand we pick the damping value
IV 

f = c/2mwo = 0.1

Iso that . 1 2 = 0.900

The differential eauat on -1. :;: C =  _0 = 0.1005 

Note that this means the actual damped frequency is:

m-: + c + kz = c' + kg (7.1)
w = 1.99r rad/sec; f = 0.9950 Hz

where:

g(t) = VOt u(t) All members of the family of infinite ramps are sim-

iar. Therefore, For every ramp input (regardless of
u(t) = unit step function speed V, frequency w or slope 0) the similarity param-

eter e is:
We make the usual abbreviations:

C = ratio of damping to critical value, c/2mwo B = 2V1 -

w =  undam ped natural frequency, k//=-- (I = 2 tan 6 ,. 0

(7.5)
The second phase shifts for the location of the iical

By solving the ordinary differential equation of motion extrema of the decaying acceleration response will be
for the displacement in acceleration response to the ramp identical:
inputs (with zero initial conditions) and then differen-
tiating those results twice with respect to time we find
the various parameters to use in Eauations 12.11 ant b, = 62 = 6 = sin -  = 0.1002 rad = 5.739'

(3.1): Figure (7.1) illustrates the two phase shifts i and 6

A.= Vo, (1- 2 2) versus the damping ratio .

(7.2) Amplitude

= damped frequency. : - The potential amplitudes of the decaying acceleration
/responses are obtained by applying the definitions in

equations (7.2)-(7.4) to the equations for similar dis-

We also note the nondimensional reduced frequencies: turbances. Equations (6.1)-(6.5).
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Figure'/.1 The Similarity parameter t and the Phase Angles 6 and 6

Figure (7-2) illustrates the decaying acceleration re- Figure- (7-5) illustrates the decaying acceleration re-
sponse of the clt./al ~spring-mass--damper for a typical sponse for traversing two equal (bixt opposite) ramps,
single ramp input at a constant speed of V = 10.0 ll3ec separated by a distance of 20.0 ',at a cons:ant speed of
,where the length units are in any convenient, consis- 1O.Ol1sec. Note that the maximumn amplitude of the

tent system- Figure (7.3) illustrates the seitivity to acceleration response to the combit.el dLturbances at
speed by plotting the acceleration response for a range a speed of lO.011sec is actually smaller than the accel-
of speeds IF = 10,I.. ,20 l1sec. Note that the am- eration response to the first disturbance alone at the
plitude of the acceleration response to the single distur- same speed. Figures (7.6) and (7.7) show that this
bance g-nows monotonically with increasing speed- Fig- will not always be the case. By changing the constant
ure (7.4) illustrates a cuious feature in the dependence speeds to V = 8.02 and 13.46 1I.Poc for the sam ramp
of the acceleration response on damping for geometry, the acceleration response to #he combined

disturbances can be markedly greater than the accel-
= 0.10.2,..,0.5eration response to the first disturbance alone- fig-

ure (7.8) further illustrates the sensitivity to speed by
plotting the acceleration response for a range of speeds

at a constant speed of V = 10.0 l]sec. Large values V = 1-0,11 ...... 10 lsec. While the amplitude of the ac-
of damping actualy increase the pzA acceler'ation re- celeration response to the single disturbance grew mono-
sponse at the earliest initants of time. These effects are tonically with increasing speed. the amplitude of theA
the result of the te-m acceleration response to the combined disturban<es dis-

plays a much mo.-e complicated structure.
A, = V 1 0,f - C2 F;gure (7.9) shows the damping effect on the acceler- 7

at~on response to the combined disturbances. Note how
the maximums, zeroes and minimums occur at nearly

which reaches its maximum value at C Y the same periodic values ofi), regardless of the value of

the critical damping ratio c.
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Figure 7.2 Acceleration Response tz a Single Ramp at I'= 10.011sec M

'II (

ii Ii

Figure I,- Acceleration Responst- to a Single Ramp at V =10. i...., 201/secr'
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Figure 7,t Acceleration Response to a Single Ramp for = 0.1,0.2 -.. ,0.5 &
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Figurr .5 Acceleraion Response to Two Equal and Opposite Ram~ps ati1 = 1O001/ee
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Figure 7.& Acceler7ion Response to Two Equal and Opposite Ramps at V = 1
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IFigure 7.7 Accelerat ion Response to Two Equal an0 Opposite Ramps at 1" 13.46i/.*cc
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BumpkMultiplier a. First Approximation

Reverting to the general case of non-constant speeds and The first approximation to the time delays that locally

ramp angles, the potential amplitude for the dynamic maximize and minimize the acceleration response to the

acceleration response to the combined disturbances is combined disturbances is:

given by: A ,. nr - 0'2; n = 1,2,3... (5.4)I
=o0v V202)2 + 2 (VIoje2l) C21 + (V o1 e21)2  o

2 = WOV (I2 +2 ( ( ) 2 (7.6) A = 3.0414,6.1830,9.3246,12.46e2,...

. ee7= 0.9681,0.9841,0.9694,0.9920,...; n = 1, 2,3...-r, -"ere: nir

= C = = b. Exact Solution

C21 = cos [W(t2 - t1)j = cosA In obtaining the exact solution for the time delays, the

The BUMP MULTIPLIER from Equation (6.3) is values of C, for n = 1,2,3... are:

R2 = IV261 1 + 2 (Vi~le 21 ) 0 1 C21 Vi~i 2  Cn 21.04; -486.9; 11270; -310,700...

WT The corresponding exact (rapidly diminishing) values of

(7.7) ~ are:

The term in Equation (7.7) gives the pure mag. On = 4.779.10- 3, -2.064'10-, 8.920'10-6, -3.855'10",
nitude effect of the two disturbances. The radical gives
the spacing effect. The dominant term is C21 = Ce A, and the exact values of A are:

which is modifiedby A = 3.0366,6.1832,9.3246,12.4662,...

(Vi =) 21 = (K- = e0-- 5A - 0.96W,0.841,0.98N,0.9920.... ;n =1,2,3...

These small values offln illustrate why the first approx-

Equations (7.6) and (7.7) are very powerful re- imation is such an excellent approximation.

suits which relate the potential amplitude R2 and ihe NL
BUMP MULTIPLIER to the instantaneous speedsV1, V2  c. Second Approximation
the average speed V, the ramp angles 01,02, the damnp- The approximate solutions for small f would be:
ing parameter a and the average reduced frequency A =a

lw/V. On -,y~za (4.10)

Best Worst Runway Profiles These approximations to P. are:

Reca-]tt the equaions which determine the best/worst = . lO-; 2
runway profiles or speeds were: =.064 10,...

i+ae 0They differ from the exact values only for n = 1, and

Asin + 0 ) + 0 (6.4) then very slightly. In addition, both the exact solutions
IA 1  %/T VZ2 and the second approximations are very small correc-

where tions to the first approximation: .r_,,

tan 12 Cc nr - 01 ; n - a (5.4)

For this example:

101 = sin- f 0.1002 rad = 5.7390 Earlier in this section, when we found the speeds A

8.02and 13.461/sec that increased the acceleration re-
For constant speeds and equal (but opposite) ramps sponse to two equal (but opposite) disturbances sepa-
Equation (6.4) reduces to rated by a distance 20.01, we used the results in Table ,.,

(6.2). Table (6.2) shows that, for a z 0.1, ths exact so-
C - + sin () + '/) 2 0 (7.8) lutions for the values of the reduced frequency A = lw/V

that extremize the acceleration response to the corn-
bined disturbances are: ..

78

N -4 N



Maximize: A/r = 0.9447,2.9558,4.9616,... Third, the potential amplitudes of the acceleration
response of a classical single degree-of-freedom oscilla-

Minimize: A/ir = 1.9853,3.9774,5.9731,... tor to a single infinite ramp and to two combined ramps
are:

For a length I = 20.0 1, and noting that f = w/2ir = R, = Vwoj01j I
0.995 Hz, these results translate to the follo% • speeds:

R2 = (V 202)' + 2(V202)(v101e21)c 21 + (V oie.) 2

Maximize: V = 42.13,13.46,8.02 I/see,... 21 ( VIOIC21) C21~ e, + ( 7.6)e2
Minimize: V -20.05,10.01,6.66 I/see,... WOV 21021f 12 ((7.6)) + (7.6)

Note that Table (6.1) or (6.2) requires the use of the where:
damped reduced frequency, A= lwl/V rather than the e2  ( = -O

t
2-4) -

the fittitious undamped reduced frequency A0 = Iwo/V. = cos jw(tz - t1)] = cos A

b. The Acceleration Response onthe Initial Slope of
Beginning with the basic building block of the infi-

nite ramp we have shown that the acceleration response

8. APPLICATION TO NONLINEAR CALCU- is given by:
LATIONS AND TEST PROGRAMS

a. Three Principles
The first set of basic ideas to keep in mind when when
using these results to plan nonlinear calculations, HAVE
BOUNCE (taxi) tests or AGILE tests is that a use-
.-d building block is the infinite ramp, that two infinite
(opposit2) ramps can combine to produce an AGARD
Bump, and that two (opposite) AGARD bumps can 0
combine to produce an AGARD Repair Mat.

- Pi

AN

The initiel acceleration response at the first corner
will be given by:

-, z r = RI sini (8.2)

We have also shown that the local extrema of the accel-
eration response are given by:

Second, recall that for two disturbances separated R, -a[(2n-1) - + 6
01 ;n X

by a distance 1, the best/worst combinations tend to e A1 & 23M
occur when: x/l + .

1W =and that they occur when
- 2-r= 2:: nxr- ;n = 1,2,3... n

V V W(tpeak - t1) = (2n - 1) - (01 + bi) ;n= 1, 2,3....

or
21f ;n = 1,2,3... (8.1) This translates to distances of.

Xrea- = K! (2n- 1) 7- . ,)] n 2,3,...
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_(2n - [)V 2(, + 61)1 and they occur when
4f -[1 -' )- ;n 1,2,3... (8.3) w ) (2n - 1)r

- 2 - t (02 + b2);n = 1,2,3,...

These are the expressions for the peak amplitudes This translates to distances of:
of the acceleration response and the locations of those X V fLn- ilir + n 1,t2,3...
peak acceleration responses on the initial slope of an zWak -Z2 = 2 - ( 1,
AGARD Repair Mat. Conversely, if the length of the
initial ramp is 11, we know that the local extrema of "1 °
the acceleration response will occur somewhere on the (2n - 1)V 2(02 + ) ;-,3.(8.7)- 4f t2- =i 3.. 87
initial ramp for speeds: 4 [ 7r(2n - .j

where in this case V is the average speed over the flat
4fl part of the repair mat. If the length of the flat part is( - n 1,2,3,... (8.4) we know that local extrema acceleration responses( - 1) will occur somewhere on the flat part for speeds:

tial slope will occur at the first corner or at the second
cornerwhere the value is: Otherwise it will occur at the second or third corners.

__()d. Obtainingthe nfiniteRampDatafrom the Teat

sin + 0, (8.5) Because of the impossibility of experimentally devel-
oping an Infinite Ramp, it will be more practical to
excite the oscillator with an AGARD Bump and then
infer what the acceleration response would have been
to an Infinite Ramp. We assumc that we have excitedc. The Flat Area of a Repair Mat the oscillator with an ACARD Bump and, therefore,

'eassume that angles 01, 82 are equal and opposite we will know e21 , S21 and C21 and will have measured
and that 11, the length of the ramp, is small enough so R2 , Q,w,, 2 in the equation:
that the speed over the initial slope is constant, V, = Re - ('(t-t) sin (w(t - t2) + 4,21 (3.4)
V2 . Then the acceleration response to the combined t
disturbances is:

The potential amplitude R, can be obtained from:

R~ea(t-t2) sin [w(t - t2) + 021 (3.4) R1 = ,2 (8.9)

Then the phase lag 01 can be obtained from:
where

C21 S21  (8.10)
R2 -OVI 01 '1- 2121 C21 + C1

tan 02 + Q (8.11)
1-tan4,

ta = - 21 ( 21 + C 2 1J )an 01  e
1-e21 (C21 - S21 )

The acceleration retponse just after the second cor-
ner is:

z21 =t . = R2 sin0,2  (8.6)
'=2

The local local extrema of the acceleration response
on the flat part of the repair mat are given by: -.

R 2 2

R1-
2 

eQ11LZ(062J;n =1,2,3....

WN>
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e. Guideines for Nonlinear Calculations, AGILE
Tests and Taxi Testsl

We begin by calculating or measuring the acceleration
response to an A GARD Bump

as just the negative of the initial slope; with the only
distinction that it begins at a distance of I + 12 aftar
the initial slope. Then we can search for the Best/Worst~length of the repair mat by setting:

over a range of speeds V and angles 0. Since the acceler- A_

gle degree-of-freedom, we must process the test data to ,n - ; n =1,2.3,...
obtain separate values of R2, a, w and 2 for each degree-
of-freedom. Then for each speed, angle and degree-of-

where 1V is the average speed over the distance between

c2 1 = eC-0t-h);i C21 = COS [42 - t~l 2 and X3. In this case we have both the average speed
V and the length 12 to use as variables.

and we use Equations (8.9)-(8.11) to calculate R ard#
A good test of our assumed linearity is to form ih. The _

values for each degree of freedom should be approxi- Now we note that the total length of the A GARD -

mately independent of speed V or angle 0. Repair Mat is 21, + 12 and assume that another repair
mat is plared a distance 13 behind the first mat. h"

The next step should be to test the linear result that Therefore, to look for the Best/Worst spacings we set:
the Best/Worst AGARD Bump. will be those for which

121, -_ 12+ nT - a; n =1, 2,3 ...

-= -= nw-a ;n = 1,2,3... V

Since 11 is fixed by the AGARD geometry, we can ac- where V is the average speed between the two repah _N
complish this variation by choosing the speeds to be: mats.

9. CONCLUSIOI',
llw

nwr - a We have treated thke dyna!'c response of an air-
craft taxiing over runway disturbances, under the as- 4
sumptior that the gross aspects cf the dynamic response N-A
can be found in the analysis of a linear, one degree--of.-
freedom system, excited by two successive disturbances.

We can interpret the final slope of the A GARD Re- We have found:
pair Mat between points x3 and X4

a. There is a great deal that cax be learned about
the governing physics for aircraft dynamic response to
taxi over damaged and repaired runways by examining

QO % 41t~ the results of calculations with relatively simple, linear
models.
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b. The seemingly ccomplicated time histories can be

merely superpositions of relatively simple, time-phased

e.Relatively simple expressions are available for the
potential amplitude (an upper bound) of the accelera-N
tion response excited by one or two disturbances. In the
(not too) special case of similar, disturbances separated
by a distance 1, with nonconstant speeds and ramp an-
gles, the expression for the potential amplitude R2 is:

R2 wo(V 2 V2)1 + 2V202 (VIOIez 1) C21 + (V1BIe 2j)2

where

C21 = co4

C.I= iwi3

d. The effiects of disturbance spaelng and variable
taxi speed are controlled by the reduced frequency, besedj
oh the averaige speed between disturbances-

e. One need not actually calculate the time histories
* to find the best/worst profiler. and speet7s, but can use

the expressicas for the potential amplitude Rf2 anii the
BUMP MULTIPLIER ~

f. To maimitze/Iminimize dynamic respon.-e a good
approximration for A is

g. While damping obviorusly co.-trols the dynamie
* :eesponse to the dipturbances, the critical speeds and

disturbrsnce spacings are weA functions of damping.

h. These results cp- erssily be extended from twe
disturbancoi- to an arl -1.'mber of disturbances and
multiple d&gfee-of-fr - tems with multiple land- U*
ing gear.

N
iThe results of calculatioan based on these linear t

methods should be compared with resu.tis from flight(taxi)
tests, AGILE' Leits and nonlinear calculations. This is
not to Eay thai the linesr results shouid be relied on to
I-re-dict detailed loads; rather the question should be do
the simple linear models predict the erit-cal spteda and
spacings so that we can use them to guide our :est pro-
grams and nonlinear solutions.
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FREQUENCY RESPONSE FUNCTIONS OF A NONLINEAR SYSTEM ,

D. A. Dederman
T. L. Paez

B. L. Gregory
R. G. Coleman

Sandia Natiinal Laboratories
Albuquerq:e, New Mexico

The presence of nonlineir elements in a structural system
can have a substantial ef:.ect on measures of structural
response which characterize lizuear behavior. A form of
nonlinearity frequently observed in complicated structures
is the rattling nonlinearity that results from impact of
structural elements. The objective of this investigation is
to establish the eftects on the frequency response function
of a simple system caused by structural rattling. The study
uses a Monte Carlo approach in conjunction with numerical
response analysis and laboratory experiments to assess the
characteristics of the system. It is shown that the V
presence of rattling components in a structural system tends
to diminish amplification of motion at structural modal V
frequencies and introduce additional frequency response

throughout the :=ainder of the excitation bandwidth. j

INTRODUCTION This study investigates the frequency --
response functions of a specific nonlinear

Many structural systems are subjected to system using a Monte Carlo approach and

dynamic environments during their service lives, laboratory experiments. In particular, the
To assess the behavior of proposed systems we frequency response functions of a structure
model and analyze them using the methods of containing loose (potentially rattling)
structural dynamics [1]. To assess the dynamic components are studied. The model used is a
behavior of existing systems we run vibration discrete, lumped mass two degrees of freedom
tests. Typically, a variety of test system. One mass, mI is assumed rigid and base

measurements are recorded and analyzed to excited, while the second mass, m2 slides freelydescribe system character [2]. These measures 2
iaclude response time histories, modal between end constraints on mass one.

parameters, freqjency response functions, etc
131. A random vibration approach is used to

estimate the frequency response functions of the
The linear system assumption is the system under consider.tion [51. This method is

simplest behavior to model. Therefore, the most presented with numerical and experimental
frequently used measures of response behavior examples. Numerical examples are worked to
come from the linear theory [41. Yet most investigate the effect of parametric variations
structures exhibit some degree of nonlinear in the system. Three parametric variations are
behavior. W/hen we test a structure which is studied. First, the effect of varying the
nonlinear it is often difficult to interpret the distance available for mass two to slide between
measures of response. Specifically, questions mass one's end constraints is investigated.

arise with regard to the system character Second, different base excitation levels are
obtained through data analysis. For example, considered. The third variation involves using
the frequency response functions of a nonlinear a coefficient of restitution which is less than
system may not resemble those for a classical one to compute the system's frequency response
linear system. function.

* This work was performed at Sandia National Laboratories and supported

the U. S. Department of Energy under Contract Number DE-ACO4-76DPO0789
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ANALYSIS A -
A q

The frequency response funct:ons of a
structural system are a fundamental teasure of X
system character. They can be used to establish
modal frequencies, modal damping factors and r. r2
mode shapes in linear systems. Further, they K
can be used to predict the response of linear
systems to arbritrary excitations. When a
system is slightly nonlinear its frequency
response functions can still be used for these
purposes, but the degree of accuracy in the,
modal characteristics and the response
predictions is inversely proportional to the Mi
degree of nonlinearity. The objective of this
investigation is to determine the effect of a 0
rattling-type nonlinearity on the predicted 7 / 7_ 7 __/_/___/_/_

frequency response functions of a simple
structure when the linear random vibration Fig. 1 - A simple structure containing a
approach is used to estimate !he structure's rattling component (r + r2= RGAP,
frequency response function. which defines the rattle space).

The acceleration frequency response
function of a simple structure containing a governed by another set of equations when they
rattling component is established using five contact. When the masses are not in contact, aI
major analysis steps. In the first step~ the is assumed to behave as a linear, base excited
equations of motion for the nonlinear system are single degree of freedom (SD?) system, and m2 is
defined. Second, the method for solving these
equations of motion is established. Third, the assumed to move with constant velocity. When
equations for generating band-limited white the masses contact, their initial and final
noise excitation are developed. Next, formulas velocities are related by a coefficient of 1
for estimating the autospectral density of the restitution and the conservation of momentum.
excitation and the cross spectral density
between the excitation and response are written. The set of go erning equations of motion
The final step discusses using these sDectral can be written for the two possible conditions _

density computations in estimating the system's which affect the response of mass one. For the
frequency response function. case when m1 and m2 are not in contact, the

This analysis approach was implemented equations of motion for mI and m2 are
using Fortran 77 on a personal computer. The independent and defined as follows:
procedure involved in implementing this solution
on the computer is detailed.

The model chosen to investigate a structure + + Y - -x (I)
containing rattling components is shown in Fig.
1. The model is a discrete, lumped mass two "°constant (2)
degrees of freedom system. Mass one, l, is 0 W c t

assumed rigid and base excited. Mass two, m2, where, U

is assumcd to slide without friction between the y z - x (3)
end constraints on a1 . Mass two represents the

system rattle mass. 0n 1 (4)

In order to define the governing equations c( )(
of motion for this model, a set of coordinate 1 n
systems were selected as shown in Fig. 1. In
this investigation the system response of and,
particular interest is the acceleration response - base acceleration -
of mass one.

= absolute velocity of mass a2

The major assumption for expressing the z - absolute displacement of mass m.
differential equations of motion for this system to - natural frequency of system when
is that the system responds at all times in one n P;.
of two modes. Specifically, masses el, and m2  no contact between m1 and a 2

respond in one manner, governed by one pair of = system viscous damping ratio.
equations when they are not in contact; and
mosses MI and m2 respond in a different manner, and dots denote differentiation with respect to

time.
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The motions of m1  and "2 are dependent when e- CAOnt sin (Ot),
a collision occurs. Assuming translational h 2 (t) [cos t - sin (dt,
motion for m and m2  during the impact, an f17
expression relating the velocities of the mass
centers before and after impact based on the 0.0, t < 0.0 (11)
definition of coefficient of restitution is '

(4f - if) - e( i 4 i) (6) 'od " nn/1-e (12)

where, and A1, A2, Bit B2 are constants that depend on

qf - velocity of m2 after impact the displacement and velocity of the structureat timet

4, = velocity of a2 before impact 
o e0

if a velocity of m after impact Numerical expression of this time domain
1 solution requires knowledge of the system base

ii velocity of m1 before impact excitation, li(t). To define a general
representation of i(t) an assumption of linear

e = coefficient of restitution variation over small time steps is made.
between m1 and m2 . Specifically, it is assumed that in the time

interval (t.jtt+,t) the ecitation can be
Assuming the initial velocities and the represented as

coefficient of restitution between a, and m2 are
known, an additional equation Is required to xx j+[ ~-jl+]xt) (3

determine the mass velocities after impact.This additional equation is based on the;+.

requirement for conservation of momentum. It Is here,

x base excitation at time t.
1*+i  2 q=lf+a 2 q (7) X+l2 base exc:tation at time t.+At S

This condition (describing an instantaneous t. = jet, j-O,1,2,...,is a dicrete

change in motion when a1 and m2 collide) is the sequence of times.

nonlinearity in our systm. For this analysis, R(x) was chosen to be a

band-limited, white noise base acceleration
A recursive response formulation was excitation with mean zero and normal _W_

selected for estimating the time domain response distribution. Since an incremental time step
of mass a 1. Since the structure behaves as a approach is used to solve for the acceleration

linear, base-excited, SDF system when the masses response of bass one, generation of a -v
are not in contact, the relative displacement discretized base acceleration, is required.
and velocity solution can be expressed as The et'iod used to generate this random white
follows, noise excitation is derived from the discrote A*

Fourier transform (DFT) difinition and linear
y t) Iblh(t-r)( .(r))dt + random vibration principles. By definition, the
t to 1DFT expression for i is

e n [Acos od(t-to)+A sin c (t-to ) -
t d (8) N e1i2njk/N j =0,1,2,...N-1 (14)

(8a k.0 Xk

t I t h2(t_)%-i())dT + when Xk is expressed as

-ton(t-t)
e [Blcos wd(t-to)+B sin ed(t-to)] X c e , k .0,1,2 .... N-1

t > t (9)
- w th P- -

where,
toe t  c rG-A--ck o , flN t < k < f2 N t

h1(t) _ e sin dt ,  t > 0.0

Md dnd = 0.0. elsewhere

. 0.0, t < 0.0 (10) CN-k ck , k 1
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where, -Ivt
f! 1 lover frequency baid-limit of signal b12 = n [-(1-2e)sin0 t +

2 = upper frequency band-limit of signal (2 c o t +

< 1/(26t) 
1+=

constant spectral density amplitude,-

Vhere the #t ' k . 1,2,....No2, are uniformly , fe (1 Co n+  t)sin:dht +
distributed random variables on (-n,n), and n d

2
o dcOSodat] - id) ( nd/t) (24) % 7

#N-k- -+' k - 1,2,...,N/2 - Cns + '-o- ".
b22 = n d dcosdt] *Then iij j- o,1,2, ... ,sN-1, is a segmnt of 2 (25

band-limited vhite noise vith duration N~t, and (0d) / (%(OdAt)(2)

rang (flf Th expessins f andhrange (fl,f 2 ). The expressions for the This formu'.ation of response is discussed in

corresponding velocity and displacement are reference [6].

N. iK i2xjk/N The displacement of mass tvo as a function
N 1 e K (15) of time, vhen no collision occurs, comes from

ii 0O ) integrating equation (2). The absolute
displacement of mass tvo expressed at discretei ,i~ i2sjk/N time, tj is

xj - kJ0 -Xe e (16) tIL

[i2nk/(NAt)17 q
2

q + (t-t (26)
j qo +  j-o

When the excitation is specified, as in
equations (13) and (14), the integrals in vhere,
equations (8) and (9) can be evaluated and the
response can be expressed (assuming no qo absolute displacement of mass tvo at
collisions occur in (t.,t. )) as time t

heabsolute velocity of mass two at time
12 y 11 13

)all- [e aln] d: + bii' b22 (1) the time the most recent impact

between m, and m2occured (after the'g
(1)first impact). .

where the elements of .the and matrices are
Using the base excitation and associated

- -~ Mvelocity and displacement equation~s (14)-(16);
n d( we can compute the absolute response of mass one

absolute responses are

-Wa - [sinwdQ/c d  (19) *l 2
121 Cnq n (27)

-COht ,2/
a., -e n cod) " YJ*I * (20) (28)

a =C n•d [cosint - (frmeudsinoont] (21) 3J+l aYJ+( 
+  )j+l (29)

In addition, recursive equation (17) was made
b nat[(1_2(2_ t)sin~n t 2 reali.sb]e by assuming initial conditions for

n ) tthe system uch that mI  and m2 vere not in

C2 7 +. contact at time zero. This condition vas1%2 _ Z 6d&c)c°Swd~t] + enforced by setting the initial velocity and
(0Md n2  (22) displacement of mass tvo equal to the arbritrary 4,

(initial absolute velocity and displacement of
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mass one, zo and zo, respectively, and B must be modified based on fr. In
addition, the base acceleration at t j+1  is

The approach used to analyze the response modified by linear interpolation to be __

when contact occurs between masses one and two Q
involves a multiple step computation. Consider x + 6rtk[(5E - .)/At1 (33)
the time interval (t ,t J+). First, given that 3 3+1 - 3

all response measures are known at ti, the In order to compute the absolute velocity t.' a
linear response is estimated at tj+ I  using similar interpolation is used for calculating

equations (15) - (17) and (26) - (29). The the base velocity at the tine of collision.
inequalities This estimate is

q. - z .. <-

+1- Zl - RGAP (see Fig. i) Thus, the impact velocity for mass one is

are checked and if either one is satisfied then = + x+ (35)
an impact between m1  and a2 has occurred in i j+fr+ 3+ax
(tit j ) and the response computed at tj+I must

be corrected. To do this, the time when The final velocities after impact are computed °"
from equations (6) and (7). Rearranging terms

qk- k = 0.0 (30) and solving for the final velocity of mass one
yields,

q- Zk = RGAP (31)
if m2[e( i- ii) + mlii + m24iJ/(ml+ m2) (36)

(depending on which of the above correspondinginequalities is satisfied) must be estimated. and

The and zk are displacements at a time tk qf - Zf e(4i - z) (37)

equal to tj plus A$, where AT is in the interval

(O,At). The collision time is estimated by These new mass velocities are then used to
approximating z(t), t < T <t31 , as a quadratic. recompute the response at time t This

i j+1,j+1*
The coefficients of the quadratic are evaluated requires computation of new matrix & and 11
by setting coefficients for the time between the collision .

and the end of the interval in equation (17).
The conditions at the time of collision are used

z(t) = z , z(t j+) = z+ 1  to represent time t in equation (17). Once the

response is computed at t j3 , thL original A and

i(t+(At/2)) ( 2 matrix coefficients are used to compute(t+(t/))= ( Z+l12responses following tj+ until another collision -

occurs. The process is repeated as outlined

The values on the right sides are known from the beiore with each impact until all N response

initial linear computation. A linear calculations have been made. This same logic

expression, equation (26), is used for computing for at was used to handle cases 'nen more than

q Now the quadratic approximation for z(T) one impact per time interval occurred.

and the linear expression for qk are used inl 'V.

equations (30) or (31) to evaluat tk , the After the time domain response of mass one

collision time. has been computed over the sample period, the

next step towards estimating the system's (m

Next, the impact velocities of m and m2  accelcration frequency response function1 2 involves spectral density estimation.
must be estitated. Recalling the assumption for iti

tSpecifically, the autospectral density of the
the velocity of m 2 from equation (2), base acceleration and the cross spectral density

between the base acceleration and the response

acceleraton of mass one are computmd. These

S q(3) estimates are defined using the following DFT *

relationships, L
To estimate the impact velocity of mI we return

to recursive equation (17) and compute the N
response using a time step equal to the newly Td) kl (f,T)(38)

computed time of collision, AT (the matrices A,
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The experimental objective was to measure
Nd , the acceleration frequency response function of

XZ( f) = (2 /TNd) k.l [* (fT) Zk(fT)I (39) the lumped mass when the plate rattle mass ts
held rigid and when the plate mass was allowed

where, to rattle. A linear, SOF system condition was
represented then the rattle mass was fixed. The

Xk(f.T) - DFT of base acceleration nonlinear conditicn was generated when the two
retaining nuts around the plate mass were

k(f,T) DFT of response acceleration of loosened to create a rattle gap.

mass one
T = sample period of analysis The experimental approach was to excite the

structural system with a band-limited white
= noise acceleration excitation. Using a digital

random vibration control system, single point
The equation for estimating the acceleration control on the armature acceleration was.
frequency response function magnitude for mass monitored to generate the desired base
one is acceleration autospectral density. Six

accelerometer measurements were recorded during
(f) 112 each test (see Fig. 2). Two accelerometers were

IF"' X ? (40) mounted on the armature and two accelerometers
K(f) (4) were mounted on the tops of the retaining bolts *

- *(  at the ends of the beams. The other two

accelerometers were mounted on the ends of the
This analysis approach is implemented using threaded stock. This was where the lumped mass

fortran 77 -,n a personal computer. The results acceleration of mass one was measured for later
of this implementation are presented in the comparison with the analysis. All
numerical examples section of this accelerometers were piezoelectric type
investigation, transducers. Response measurements vere

recorded on analog PM magnetic tape during
testing.

EXPERIMENTS The data were analyzed using standard

digital signal analysis procedures applicable to

Experiments were conducted to validate the linear random vibration testing. The test
analysis approach used to compute the frequency system acceleration responses were analyzed
response function of a simple, nonlinear through estimation of their associated transfer
structure. The structure selected for verifying function magnitudes and coherences. These
the analysis model is illustrated in Fig. 2. measures of system character were made with
This structural system consists of two 12 x respect to the spectrum of the test system
1.688 x 0.125 inch (304.8 x 17.463 x 3.175 mm) control accelerometer- The data were analyzed
aluminum beams, fastened in parallel with a with an effective noise bandwidth of 2.00 Hertz
lumped mass configuration of threaded stock, (equivalent rectangular bandpass filter width).
nuts, washers and a steel plate rattle mass.

This lumped mass configuration is attached at Initial testing verified the simple
the midpoints of both beams. The beams are structure responded as a linear, SOF system when
preloaded at each end and fastened to the shaker the rattle plate was held fixed. The
armature such that the armature motion is structure's first bending mode was estimated to
transmitted through these retaining bolts to the be at 138 Hertz.
system. The dimensions of the rattle mass are
2 x ? x 0.25 1=h (50.8 x 50.x 6.35 un). Yass Using feeler gages, ratile gaps of 0.005
one is 0.249 kg and mass two is 0.117 kg. inch (0.127 an), 0.010 inch (0.254 mm), and

0.020 inch (0.508 mm) were in,roduced irto the
test setups. Numerous experiments were
performed with these gaps over flat base

A, A2  A, acceleration auto? t~al density levels ranging
4 from 0.000001 b- 2/Hz to 0.01 g**2/Hz. The

frequency bandwidth of these excitation
spectrums was defined from 5 Hertz to 300 Hertz

M2 for all experiments.

4 Several observations may be made based upon
review of the system's feuny respons-t

A functions. Fig. 3 illustrtes how the systez
A A frequency response function is affected by

-various base excitation autospectral density
7 / levels for a constant 0.020 inch rattle gap.

The primary effects are the reduction in the
system's peak amplification and the smearing of

Fig. 2 -The experimental test structure. the amplification curve with increasing base
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autospectral density levels. In addition, the examples discussed are based on three parametric _W

superposition of additional frequency response variations in the system analysis. The first
appears throughout the analysis bandwidth of the example investigates the response of mass one
transfer function. The effect on the frequency when mass two is allcved to rattle in four
response function caused by varying the system different system configurations. The
rattle gap and holding the base autospectrum configuations are a no gap (m2  fixed)
constant is shown in Fig. 4. A similar loss in 2

amplification is observed. However, this change condition, a 0.005 inch (0-127 mm) gap, a 0.010

is approximately the same for all three rattle inch (0.254 mm) gap, and a 0.020 inch (0.508 mm)

gaps at this test level, gap. These particular intervals were selected
to compare numerical analysis results with
experimental results. The second example
investigates the amplitude dependence of the
system frequency response function when the
system is excited at different autospectral
density levels for a 0.020 inch rattle gap. The

AUTOSPECTRAL DENSITY EXCITATION final example looks at the effect of modelling YWI

COMPARISON the mass collisions as not perfectly elastic
S10 .. .. (el).

These numerical examples are generated by 'a

ZE 1.detining specific computer program input
5.0 E-3e/Hz variables. Example model parameters were

o 0.1 assigned values based on the experimental
z structure tested in the laboratory and the
? analysis parameters were chosen based on0.01 EFFECTIVE NOISE 8ANDWiDTH=2.O0 Hz 7

RATTLE GAP=0.020" (0.508mm) parameter values used in the laboratory
ACCELEROMETER A2 analysis. The system model constants measuredZ O.001

s. 10. 20. so. 100. 200. 30. from the experimental structure and the data
voeUENci,,i analysis constants are, X.

1. Hodel masses: m1  0.249 kg m2 f 0.117 kg

Fig. 3 - Base excitation autospectral 2. Linear system damping ratio: C = 0.01
density comparison. 3. Linear system natural frequency: f. = 138 Hz O

4. Frequency step: Af . 1.00 Hz
5. Nyquist Frequency: fN 0 = 1024 Hz

6. Base excitation bandwidth: BV - 295 Hz
7. Coefficient of Restituti-on: e = 1.0

RATTLE GAP COMPARISON 8- Ensemble averages us o compute
a RTL G C R system frequency - ,,nse function: H = 20

0 N The linear system (no gap) case defines mI equal

to mI plus m2 and m2 equals zero.

Z o.o2o" GAP fhe time domain response records are 2048

I- osamples over a one second time interval. These
9 response records were all generated with the

O O P EFFECTIVE NOISE BANDWIDTH = 2.00 Hz same initial conditiors on masses one and trc as
DEST

UT
Y

s
n CTRAL  

1
s

n e-4g/Hz described in the analysis section.
ACCELEROMETER A2

0 .0.1
S 5. 10. 20. 50. 100. 200. 300.

FREQUENCY. H-
An autospectral density amplitude of 0.0001

g"2/Hz was used to generate a repeatable base

acceleration for comparison of rattle gap
Fig. 4 - Rattle gap comparisons, effects on the system frequency response

function. This base acceleration for the first
ensemble average is shown in Fig. 5. Figures 6 o '.

and 7 illustrate the associated response_.,
accelerations of mass one computed at each
discrete time step for a linear and nonlinear

NUMERICAL EXAMPLES analysis. It should be noted that Fig. 7 does
not show the collision responses which occur
within the time step interval. These examples

Computer generated, system model responses assume a delta function represents the mass
are presented in this section. The numerical acceleration during impact.
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2 TIME DOMAIN NONLINEAR SYSTEM
TIME DOMAIN SYSTEM BASE EXCITATION RESPONSE

RGAP=O.508mm L020'% H 2048; 0t-0.01 RGAP =0.508mnf (.020'); N- 2048; DR= 0.01

ASO=.0001 G-2/W-iz

r 1 1U,
;f0.2 .iIp11Lr

2 t -.- f t 1 A7

It. , .-AS=1101'*/H
-0.6~~~~ ~ ----- N _____-

- 0 0. 0.i. . . . . .

-0.5.

0Fgue 8. t0rug 1. B 10 are 0.raphical.

conparisons of the frequency response function
magnitudes for a speci:;c rattle gap interval
and the linear SOP case. The ensemble average
number of impacts between mass one and =-ass two
during a one second analysis time were 58d. 109,
and 175 for Figures 8, 9, and 10, respectively.
As expected, the average numiber of impacts
Increased as the rattle gap interval decreased
from 0.020 inch (Fig. 8) to a.005 inch (Fig.
10).

Several primary rattle gap effects on the

*TIME DOMAIN LINEAR SYSTEM RESPONSE frequ ncy response function can be obser-ved by
inspection of these graphs. First, a reduction

3 in the systemis peak amplification is observed.
This reduction is greatest for the 0.010 inch

2 j and 0.005 Inch rattle gap intervals. Second,
2 ~ the systems peak, amplifiain response has

A~LI U1i~ 3 V shifted frequency and severel n e a-- arc
F I ~ ~ ~ ~present. Next, a general spreading in the

k amplification cur-e'3 sharpness is shown in all
_J WR cases. Fourth, the frequency response functian

IN is increased at frequencie avaiy fro= the
Lh natural frequency of the linear system. Th4e

I -~ ~final effect is found at low frequencies vhere
4)2~ ~~ ~~ =5 01G2*10 to15 stertl gpi iiihd

0the respon.se intercept has shifted upwards from

ASD=.001 -2fMgeneral smoothing iAn the response curve is seen
-3 over the 10 to 35 Hertz frequency band.

0 0.2 0.4 0.6 0.8 1 I
TWE. seconds

Fig. 11 presents the associated coherence
functions for the linear, 0.005 inch and 0.020
inch rattle gap responses. These curves show

Fig. 6 Linear model response acceleration the loss in unity coherence ;6th an increas-ing
from base excitatbon in Fig.5 number of collisions bet-ween masses.
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SYSTEM RATTLE GAP COMPARISON SYSTEM RATTLE G AP COMPARISON
ASD=AE4GSHU=2; *HZ)I38; OR =O.01 ASO 1.0E-4G Sit M =20, ffH)138; DR =0.01

NO GAPNO GAP~

inch~~~~~~~ (058.00rtlegp.ic (0.127tm) Ategp
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I- - A .
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Fig. 8 The system response vith a 0.020 Fig. 10 T Cherssemncesp-tons orthe0.0
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The frequency response effects of exciting BASE ASD AMPLITUDE COMPARISON
the system in a 0.020 inch rattle gap
configuration at base excitation levels of RGAP=0.O20';M=20-,f(Hz)=138;DR=L01
0.000005 g**2/Hz (5.0E-6) and 0.0000055 g**2/Hz a IS. -
(5.5E-6) are shown in Figures 12 and 13. The 5&OE-6 G2/"z
ensemble average number of impacts per second of &. E.eG2/Hr
excitation is 7 and 9 for Figures 12 and 13, to.

respectively. However, while the average numberof impacts for the lower level excitation is

indicative of all the individual records, the
higher level excitation average number of
impacts is not. Specifically, the range of 1.o
impacts per run at 5.OE-6 was between 0 and 12unlike the range of impacts per run at 5.5E-6 .-K

transition, the shape of the frequency response ASD=ATOSPCTRA.
function begins to change. 0.1 DENSITY

Fig. 12 shows a loss in peak amplification 10. 20. 50. 100. 200. 300.
and the superposition of additional frequency FRE ,EN YH
reaponse throughout the frequency bandwidth.
Fig. 13 shows similar results but the ,
amplification curve has spread out over a larger Fig. 13 - System response comparisons
frequency range and multiple response peaks are Between two excitation levels
present. In addition, the peak amplification no for a 0.020 inch (0.508 mm) gap.
longer occurs at 138 Hertz but is now shifted to
approximately 105 Hertz. In this example there
were two runs (among a total of 20 analyzed) in -_

which approximately 105 impacts occurred during
the one second response. The associated
coherence functions for these be e excitation
levels are shown in Fig. 14. Again, a loss in
unity coherence appears directly proportional to
the number of collisions per sample period.

BASE ASD AMPLITUDE COMPARISON BASE ASD AMPLITUDE COMPARISON ',; .

AOAP 0.02W; M 20; IOW = 138; 01=0.0 1 1.0 AP-0.02(0, M 20; I(Hz 138; DRA0.01

LINEAR 1 1"

0 2E-6 G0/Hz 0.1

040' 5.0 " 'NZP

I IIV = -
!5E-6 G /HZ

1.0 0.001

A SD =AIJTOSPECTRAL
DENSITY

Im 2M50 100. 200. 300. ~
10. 20.50. 100. 200. 300.

FREQUENCY, "z - - ,

Fig. 12 - System response for a 0.020 inch Fig. 14 - Associated coherence functions
(0.508 mm) gap from a 5.0E-6 for excitation comparisons in
G**2/Hz autospectral density Figures 12 and 13.
excitation.
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The final numerical example investigates in Fig. 15 is 41. The range of impacts per
the use in analysis of a coefficient of second is 23 to 94.
restitution not equal to one. Results obtained
using coefficients of restitution equal to 0.75 Fig. 16 also presen several different
and 0.90 are presented. A base excitation level observations with respect Fig. 8. Amplitude
of 0.0001 g*A2/Hz (1.OB-4) and a 0.020" rattle similarities at frequencies between 10 and 35
gap were used in this example. hertz are observed but the curve in Fig. 16 ismuch smoother. The additional frequency

response in Fig. 8 is significantly attenuated
Fig. 15 and Fig. 16 are the frequency over the remaining analysis frequency bandwidth

response functions for coefficient of in Fig. 16. The peak amplification curve is not
restitution values of 0.75 and 0.90, spread but closely follows the linear system
respectively. Recall Fig. 8 is the same response except for the actual peak. The actual
analysis system but used a perfectly elastic peak amplification is approximately 12 to 1.
collision assumption. Fig. 15 is similar to The response characterized by Fig. 16 had an
Fig. 8 but two distinct differences are ensemble average of 35 impacts per second. Theobserved. First, the additional frequency number of impacts in each run was fairly uniform "

response over the frequency bandwidth has been with a range of 25 to 48 impacts per second. ____

attenuated in Fig. 15. Second, the peak The low frequency amplitude intercept at 1.5
amplification occurs at the linear system peak appears to roll off at approximately 35 Hertz.
amplitude frequency value. This peak The coherence functions for these coefficient of
amplification has doubled relative to the restitution comparisons are given in Fig. 17.
response amplitude at this frequency (138 Hz) in The coherence for e equal to 0.9 is less than 14
Fig. 8. The ensemble average number of impacts unity but not as poor as for e equal to 0.75.

e

COEFFCiENT OF RESTITUTION COEFFICIENT OF RESTITUTION
COMPARISON COMPARISON

RGAP =.508fmai ASO= 1.OE-4; f= 138 Hz DR=.01 B RGAP =.508am ASD =1.0E-4; f = 138 Hz; DR =.01

I0NA UNEAR~i

2F

0.P 10 -..

,o 0o°-°

________ _o.1]

10. 20. 50. 100. 200. 300. 10. 20. 50. 100. 200. 300. --- .
FREQUENCY, Hz FRQUNY. Hz .'.,

Fig. 15 - System frequency response for a Fig. 16 - System frequency response for a "'
coefficient of restitution equal coefficient of restitution equal - .
to 0.75. to 0.90. - ."

CL~~ a.,f,,

W5 - -,

933
0.11.

LU 0.1
10. ~~~ ~~ ~~~~ ~~l 20 0 00 0.30.1. 2. o o. 0.30
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COEFFICIENT OF RESTITUTION establishing a "whitening" effect related to

COMPARISON rattling. This effect is also reflected as a

RGAP=MO ASO=1.0E-4;f= 138 ft DR=O.1 smearing of peaks in the frequency response
1.0- =function.

I 0-.go UNEAH-'

IThe third conclusion is that reducing thet ' ;I I !icoeffcie~nt of restitution below one has anN

Ml- *=0.75 averaging effect on the rattling phenomenon.
Specifically, when the coefficient of
restitution is one, there are many situations

I~J~rwhere parameters can be chosen such that in some
o.1- numerical experiments much rattling occurs.

0 When the coefficient of restitution is reduced
to a realistic level the amount of rattling, 1Nwhile random, tends to be uniform throughout any

o0.01' ensemble of numerical experiments.

i , The fourth conclusion is that the presence
10. 20. 50. 100. 200. 300. of rattling in the structural response tends to

FREOUENCY, Hz diminish the coherence between excitation and

response below unity. The decrease in coherence
is proportional to the amount of rattling.

Fig. 17 - Coherence functions for model
responses in Figures 15 and 16. The final conclusion is that modelling the

impacts between masses one and two using a
coefficient of restitution equal to 0.9 produced
a reasonable estimate of the experimental =-

results except at low frequencies.

CONCLUSIONS

This study investigated the frequency REFERENCES
response functions of a simple structure I
containing a rattlii.g component. Parametric [l] William T. Thomson, Theory Of Vibration
variations in system base excitation levels, With Applications, second edition.

rattle gap configurations, and coefficient of Prentice-Hall, New Jersey, 1981

restitution values were analyzed using a ;onte [
Carlo nuerical approach. Experiments wereSystem5427A",

conducted to verify the model's predictions for Hewlett-Packard, 1979

this type of nonlinear structural system. Five
major conclusions come from this investigation. 3 & VibrationM Harrisand Charlesecond.Crede, Shock

First, when a structural system is excited McGraw-Hill, New York, 1976

so that loose components begin to rattle, there
is a reduction in th1iersytm pa 4] Y. K. Lin, Probabilistic Theory Of

Structural Dynamics, McGraw-Hill, New York,
frequency response amplification. This response 1967
effect occurs because motion is transferred ii
between the colliding masses and momentum must [a
be conserved. In order for mass two to [5 n Julius S. Bendat and A Oran G. Piersol,

experience an increase in motion, mass one must Engineering Applications Of Correlation AndSpectral Analysis, John Wiley & Sons, New
experience a decrease in cotion. This results York, 1980 J l o
in a reduction in the frequency rEsponse
function amplification for mass one. [61 Roy R. Craig, Jr., Structural Dynamics An

Second, the force between uasses one and Introduction To Computer Methods, pp. 139-

two was modelled, in this analysis, as a delta 146. John Wiley and Sons, New York, 1931

function at the time of impact. This

superimposes delta functions on the acceleration
response at the times of impact. (In real
structures impacts between structural elements
generate short duration forces at impact points.
These excite responses at other points on the
structure, and these responses may resemble
impulse rezponse functions whose characteristics
depend oai system parameters, points of impact
and measurement.) These superimposed delta
functions have Fourier transforms which tend to
be flat, therefore, the frequency response
function tends to increase rt all frequencies,
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SYSTEM CHARACTERIZATION IN NONLINEAR RANDOM VIBRATION

Thomas L. Paez

Dan L. Gregory

Sandia National Laboratories
Albuquerque, New Mexico

Linear structural models are frequently used for structural
system characterization and analysis. In most situations they
cnn provide satisfactory results, but under some circumstances
theN are insufficient for system definition. The present
investigation proposes a model for nonlinear structure
characterization, and demonstrates how the functions describing
the model can be identified using a random vibration experiment.
Further, it is shown that the nodel is sufficient to completely
characterize the stationary random vibration response of a
structure that has a harmonic frequency generating form of
nonlinearity. An analytical example is presented to demonstrate
the plausibility of the model.

Introduction excitation and responses are then used to
estimate the cross spectral densities between
the excitation and responses. Each cross 4Exprimental identification of structural spectral density is ratioed with the excitation

systems usually employs a linear model for the auto spectral density to establish h eiatautospetraldenityto etabishan estimate
structure. The frequency response function of a for the structural FRFs at the points of
linear system can be identified using either a interest. Details of the procedures described
deterministic analysis or a probabilistic above are given in References 1, 2 and 3.
analysis with random excitation. When the
physical system being tested is truly linear Modeling and identification of nonlinear
then use of the linear model and analysis are systems, however, is not as straightforward as
appropriate. Further, when the system is the procadure outlined in the previous paragrph.
slightly nonlinear a reasonable representation The literature contains many models for specific
of system behavior can, in some senses, be types of nonlinear structural systems and
established with the linear model. If the describes approaches for computing their
identified model is used for prediction of responses when the excitation is defined. See,
response or for the computation of the for example, References 4 and 5. In some cases,excitation that causes a specific response, then experimental techniques useful in the
the analysis may, remain satisfactory as long as identification of system parameters arethe nonlinearity effects are negligible, described. However, the difficulty with using

such models in general applicatons is that it is
The procedures commonly used for the not usually easy to ascertain that a structural

identification of the frequency response system has a nonlinearity that is appropriately
functions of linear systems involve averaging modeled with a specific parametric form, and it
operations. For example, the stationary random is usually not clear what error is introduced
vibration procedure for estimation of the when one nonlinear model is used to simulate a
frequency response function (FRP) requires the system with a different form of nonlinearity.
generation and measurement of a random This prob)em has been avoided by the use of the
excitation. This excites structural response Volterra model for nonlinear systems. This is a
which is then measured at points of interest. nonparametric model that characterizes nonlinear
The measured excitation is used to estimate the systems using higher order impulse response
auto spectral density of the excitation: the functions and their Fourier transforms. This

type of model and its identification is
described, for example, in References 6, 7 and

8. The shortcoming of this model appears to be
its inability to model frequency generating
forms of nonlinearity.

T is vork was porformed at Sandia National Laboratories and supported
the U. S. Department of Energy under Contract Number DE-AC04-76D00789
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The harmonic frequency generating form of generating transfer function. This model
nonlinearity is one that is comonly seen in generates a response component, characterized by
practice. This form of nonlinearity is related magnitude and phase, at frequency wi as a .
to harmonic distortion of motion at frequencies
where motion is substantial, such as modal complex valued, algebraic, power function of
frequencies. Response in a nonlinear, harmonic excitation components at frequencies Wk'

at a particular fundamental frequency, and some - n The H1 (W w1 )
fractional level of that power at odd multiples
of the fundamental, whether or not structural the power function. A special case of this is
excitation power is applied at the higher the linear excitation -response case. This
frequencies. The frequencies where a nonlinear ocrs when N-1 and the Hj(w;. wi) are zero IN
system shows signal content in the response are Xr
related to the shapes of the displacement and e wh
velocity restoring force functions. The established using measured excitation and
harmonic frequency generating form of response, the representation (1) can be used to
nonlinearity appears often in random vibration predict the response of the structure to random

tests and causes difficulty in system excitation. Further, the coefficients serve as
characterization and test control, a descriptor of structural behavior.

The prerent investigation establishes a A method for establishing the H-(W, W.) is
model for nonlinear, harmonic generating
systems. It is shown first that the model can now developed. Let the excitation be a zero
be identified using a random vibration approach mean, stationary, normal random process.
similar to that used in linear system analysis. (X(t),- <t<c). Let X(w represent the discrete
Second, it is shown that once the system is

identified the model can be used to establish Fourier transform (DFT) of a segment of the
the response characteristics for random excitation whose duration is T seconds. Let the
excitation. An example demonstrates the use of excitation be defined such that all its
the model, frequency components are uncorrelated. Multiply

both sides of (1) by (X*~( )j h thpwro
The Nonlinear Model and Its Identification bh I )), the th power of

through Random Vibration Tests the complex conjugate of X(wj), and then take

The model established in this investigation the expected value on both sides of the
is for a nonlinear, harmonic generating system. equation. The result is
It is a model that can be used to describe the
behavior of a structure which, for a mechanical E(Z(,)(X* m )
reason, when excited at a particular frequency, (X
executes response not only at the excitation H n E i

frequency, but also at harmonics of that j I HJ(-k'.-i) E(X(&k))J(X(wt)))
frequency. Many real structures display this
characteristic. The model is established first 1-0.n
and discussed briefly. Then the method for £-0. n (2)
identification of the functions in the model
using a random vibration test is established. This expression can be simplified. Because the X'.

components of the stationary excitation are
Consider a nonlinear, harmonic generating

system where the Fourier transform of the uncorrelated, the moment E[(X( is
response is represented

zero except when 4k-w,. (The specific reason
M n

Z(ui) j"lk(O (X(wk))J for this is shown in Appendix 1.) Therefore,

S(. n (1)( i) (X
M

Z(Wi) is the Fourier transform of the response - (Jt(uOCi) E((X(W))J(X*('))m)
J.1.-

at frequency wi. X(V is the Fourier transform
i-O.....n

of the excitation at frequency wk Hj(wkui) is t-O,....n (3)

an element in the sequence of coefficients that
characterize the structure; the coefficients are
deterministic and independent of the excitation,
and might be thought of as forming a harmonic
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Further, the only situation where the E[Z( Win (X ( M(+l)/2
expectation on the right hand side is nonzero is a function ofT and
occurs when j-m. (The reason for this is also
shown in Appendix 1.) Because of this this is so assumed. Specifically, it is assumed

that

E(Z(W) * m T(m+l)/ 2 
S II(E(Z() x (wt)) T S.,_-Hm(wj ,w) E(!X(,,, ) 12 m)  -X' W ' dL O

t0 ...,n (4) t0 ..... n (6)

At this point it is possible to conduct a where S '
' ..A is the spectral function -hat

stationary random vibration experiment. First, ra (ie
M relates Z(t, ) and (X (Wt))

m in the frequency_ .i '

we would estimate the moments E[Z(wi)(X (uy)) m  P 1

Pn domain, and, as before, T is the time over which
and El I X(u£)I~] using standard statistical the DFTs are taken. S i ) is assumed

time independent. X*--
techniques, and then we would ratio the results Based on (4), (5) and (6). Hm(-,£, i) can be
to obtain an estimate for the coefficient can b
function H,(w. w i). However, it is useful to used to write a time independent, haronic

establish the relation between the excitation generating transfer function. This is

spectral density and the moment E[IX(W£)I 2m], S m(ui' wi)
S (W't

and to write a special expression for the Ze=

moment E[Z(.i)(Xt(£))m ] before proceeding

to estimate the H m ( W j, . As mentioned if0 ......
...... ,n (7)

This function describes the harmonic generating
previously, the excitation random process is a character of a structural system.
zero mean, stationary, normal random process.
l]et Sx~(u)) denote the spectral density of the In order to establish a numerical estimate '

excitation, {X(t)}. Then it can be shown (See of (7), statistical estimates of the moments
Appendix 2.) that 2m [Zw)(X()m

E[IX(wj)I 'j and EIZ(w.)(X*(u))n are required.

E(IX(u)I 2 m) - m! T e(W) These can be obtained using standard statistical
procedures. The approach and formulas required

m -.... M to obtain the statistical estimate for
t0 .... n (5)

arrViZQ. )(X*(W)'I is given in Appendix 3.when wlT>>I, and where T is the time associated Z( i e A d
with the DFT's (and later, with the statistical The functions established in (7) contain a

a1m isubstantial amount of information that includes,--. -ale . o taE[|X(W£) is a function but goes far beyond, the information in a linear
FRF. in fact, the harmonic generatirg transfer

of the DFT time interval because Sx4) is time functions defined in (7) could be used to
independent. describe how response is generated at every

frequency given excitation at every frequency.If the response were a normal random .'

process and the correlation between the When the response is characterized by Fourier
frequency components of the excitation and the components at n frequencies, the harmonic n

frequency components of the response were known, generating transfer function defined for each 0_
then it would be possible to obtain an 2
expression similar to (5) for the moment value of m contains n points, therefore, when m

and this expression would takes the values I through H. Hn items of
information can be used to define the discrete

(M41)/2 functions F , ) Forelsivausof
reveal a dependence of that moment on T fF i ) . For reaistic valuesf
However, because of the nonlinearity of the
excitation - response relation, the response is and (especially) n it is not realistic t( assume

not usually normally distributed, and the that Hn2 values could be stored. Note. however,
expression cannot 'be obtained. Nevertheless, it that in realistic situations, it is not
probably remains a fact that the moment anticipated that the functions FW'(.. u will
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IF A

have substantial values at all frequency pairs nonlinear. harmonic generating system to(w,wi). In most situations one would expect stationary, random vibration excitation. The
reason for this completeness is the fact that '

substantial values when oi-wt, 3wt,5-Ow etc., and different frequency components of a stationary .,random process are uncorrelated.

possibly when w-2o, 4 wp, etc. For example, if

knowledge of those elements in Fm(t, Wi) which Example

create response at wl- , and 3wp are desired for This section presents an exaple that
demonstrates the use of the formulas developedm-I and m-3, then 4n items of information need in the previous cections. The system to beto be established to characterize considered is a simple Duffing oscillator.

to e s abisedtochaacerzeF m, £L Figure 1 is a schematic display of the system. -

Thus, most practical situations will require a It is governed by the nonlinear, ordinaryreasonably accomodated amount of data storage. differential equation

S+ 2 + 2n z + z3  x

Random Vibration Analysis Using the Harmonic where wn is the natural frequency of theGenerating System Model 
.

associated linear system, 4 is the system *
Aside from basic system characterization, damping factor, £ is a small positive constant,the fundamental reason for establishing the x denotes the excitation z denotes themathematical model defined in (1) is to provide d ent espon, a denotethe capability for random vibration analysis of differentiation tith respect to time -the harmonic generating system. Given the

coefficients H (W , WW ). a random vibration 
ra

analysis can be easily executed. To do this, zthe complex conjugate of (1) is taken and
multiplied timzs (1). Then the expected value
is taken on both sides; the result isT.

E(IZ( i)1I) I Z£ZLZ Hj(.wp * ()J ktm 
'H

i (0.....n (8) SPRING RESTORING FORCE = M z+ Tz 3 + L

Recall that the expected value on the right hand
side is zero except when r-k and I-j; therefore. DAfnER RESTORING FORCE = Zthe expression simplifies to ASS NORMLIZED FORCE

SE(IZ(tui) 12  XLE I H J(juiI(I(J)I Figure 1. Duffing oscillator.

i-O.....n (9)

Now (6) can be used to simplify the left An approximate expression for the responsehand side (using Z(w.) in place of X(u, ) and can be developed using the perturbation

approach. (See Reference 4.) With this approach=-I) and the right hand side, and (7) can be it is assumed that the response can be expressedused to establish an expression for H wk. wi )  as an expansion in the small term C. That is
that can be used above. The result is (12)

z(t) -zo(t) + cz 1 (t,) + .(2

Szz( i )  Z Z'E j! IF ('k,1) 2 Sx(k) (12) is used in (11), and linear equationsi-0.. (10) governing z0 ' z1 , etc.. are developed by
This formula establishes a m-eans for grouping terms by coefficients of E , E etc.,computing the spectral density of structural and noting that the coefficients must equal zero 1.7response to stationary random vibration if the components z0 , z l' etc.. are to beexcitation. The forula is complete in the

sense that it includes all the terms necessary it-dependent and arbitrary.for characterizaticn of the response of a
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When the excitation is A

x I) - Xk exP(iakt) (13) 1

it can be shown that the first order
approximation to the response is i_

where H(W) is the P function of a linear__-
single-degree-of-freedom system. This formula -"

-

includes mor terms than (1), therefore (1) can

Xjo ~ e ---j+".t

only represent the frequency domain response in
an approximate, limited sense, in the general
case. However, for stationary, random vibration .I
analvsis, the terms in (14) where jok-,. and j*£ .1 1 10
are unimportant and frequency,

vN
k Figure 2. The first expression in (16).

- k H(3.k) R
3 (u x exp( 3 kt) FRF of a linear single-degree-of-freed'm

(15) system.

represerts the response with all the terms
necessary for a first order analysis. In view ..
of this, the harmonic generating transfer -0
functions for the first approximation to the
Duffing oscillator are

H -, H~wi). J-1. k-i
/-cH(Wi)H3(.i/3), J-3. k-if3 "

0o. otherwise

(16) , l0-
TIhe first expression simply establisihes the ~
nature of the linear part of the response. The f
second term transfers excitation at frequency I
!./3 to response at frequency wi The moduli of 3

hese fumctions (a normalized form, in the _

second case) are plotted in Figures 2 and 3 for
the case where 4-l, 1-0.05. The frequency

generating nature of H (wi/3, wi) is apparent in

31

Figure 3.

Similar analyses are possible for higher
approximations to the Duffin oscillator

response and for other nonlinear systems.

.1 InI

frequency,

Figure3. The second expression in (i..
Ti ra ha=-nit generating transtL.- :u.-
Liun of a Duffing oscillator.

., I-
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Conclusions Because E[eir -0 for all s and all r#O,

The response of a nonlinear, harmonic all the moments in (A) are zero except when k-1 V.
generating structure to stationary random and j-m, and when j-m-0. Therefore. (A3) is

vibration excitation can be represented using an nonzero only when k-i and i-. V

expression that is a series of power series in ",.
the Fourier transform of the excitation. The
coefficients of the power series describe the Appendix 2
character of the structure. An analytic-l
example shows that it can be easy to establish This appendix considers a random process

the coefficients. Further. it is demonstrated X(t) .O<t<T), a segment of a mean zero.
that the coefficient functions required for the stationary. normal random process with
nonlinear representation can be obtained autoorrelation function RXX(T and spectral

experizentally. The magnitudes of the 2] l
coefficients of the harmonic generating terms
can be used to assess the degree of nonlinearity
of a structure tested in the laboratory. evaluated where

Future investigations must demonstrate the X(W.) - X(t) exp(-iwtt) dt
usefulness of this model with experimental data. 0

and -1st consider the use of this model when the
excitation is not a stationary random process. The real and imaginary parts of X(".) are normal --

random variables given by

Appendix 1 XR() X(t) cos(utt) dt (M)

This appendix considers 1X(t).O<t<T). a
segment of mean zero. stationary, normal random
process with Fourier representarion 4 j (t) sif(mt) dt(

n-1
X(t) - Xk exP(i2Tkln-t). OCt<t The random variables "(-£ and Xi (w.) have

uwhere zero means. The variance of XR(Q) is -W-

Xk - Ck  exp(i,- . W )- (i E "p d -ds
In this expression C0-, Cflk-C. k-l. n/2.-(%) A

are deterministic constants related to -he Define the change of variables -- s-t, Y-s+t. and
random process spectral density. and 400. allow z to cover the interval t o ) -

establish an approximation. Then 4V
k-.....n/2, are uniformly distributed 1E(,(,) s.x(o) si.(2.,T)

randca variables on (-. =). were j av: ek are ( (A)
(As)

independent for j~k. Reference 9 establishes
(Al) as a valid representation for a stionary w>>! and WOU) is near in value to
rarndon process. Sx(wj). this is approxictely

It will be shown that E[X(XL) zero ( )) (Al")

except when k-L and j-=. Based on (A2) Similarly. it can be shown that

(A3) (0 (All)

Because the Ik' k-0...n/2, are independent

E(exp(i ( J -.m,)

k-Z

|E~e'p~i )E(cxp(-imt)). kol

()
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Note~~n thtc&~ is the saupi-n& period of. tbe =easured

2 y2AZa2)X data. Form products like Z. (Xk and average

Therefore these over all blocks.

X - (A20)
-A k-i

nE(2 ir~ ~ " 'A~IJ his is an estiznate of the =*nent that appears
r~O in (it) and (6).

(A13)

Because of (AlO) and (All) and the fact that References
F(.)and X (w) are norzal randorm variablesALIL:) 1. Bendat, 3.. Piersol, A.,* Randomi Daa

- ~Analvsis and Measurenent procedures. Wiley-4
E((I~u~) ) E((X(u~) )Interscielnce. New 'York, 1971.

___ 2. 1  Otnes. R.. Enoclison, L., Applied Time Series
- 2n! (wu)j2 Analvsis. Voltme 1. Basic Tecbni us. WJilev-

2' ni R Interscience. New 'York. 1978.
('u) 3. Bendat. J .. Piersol. A. L.iern

Aplications: of Correlatiorm and Sp-czral

Use of this expression in (A13) yields Anaysi. 'Jiley-Intersciemcc. New York. 1980-
4. Stoker. 3.. honlinear Vibrations in

for ~ is ~ !~ecanicM and Electrical .... Systens.

for Interscie-ce Publishers. New 'York. 1950.
-4>>. -ic i tedesired result. 5. Ilinorsky, N.. Intro-A-ctionl to Hanlinet

!Iechanics. 3. UJ. Sduards. A.nn arbor. Fich..
1947. '

6. Schetmen. M. . The Volterra and Wiener

Appeimdix 3 ~~~Theories of olr. Sse. Iile
lntersbcience. Newr York. 1960.

Thi apenix hov Lw te =L- 7. Chouchai. T. . vinh. T.. -lssof
This appedix hOWS~' onlinrar Str~ture .b PrWjrPed Imact

EI~u. ('~ u)) - ca b satstcalyTesting and Higher Order Transfer Fction.'! A
S c beoceedintsll of -h4th Intern-ationalj woSal

Analyis Confrece. Los Angele-s. C.. 1996.
esti-zted. Let IZMtI and 17(t)) be stationary 6. '!munscn. C.. 'Detection. Idettification.
and ergodic. =ean Zero random processes. Ass--.w and Qu-anification ofE Nlinearity in N-odal
that =easured re-alinat ions of the radmfay . proceedznt of -the rt
processes are available; denote these z- cud m. AwiCneene

JInternational M4 mA~i cfrne o

J-1 ... n. Divide each timme series into N &-Seles. ca. . 19S6. acorabe-
Papoulis. k-. Rub-litr Tar_ __ s

blocks of equal length N. suc-h that w-r-n. amd SzAchaE:tic Processes. Crmeiivl
Denote the jth-- elezents of the ktn blocks Tork. 196.

z.~,. J-0 .. N1. k-i. N.. ftltiply each data

block by an amplitude adjusted data vindaw. w j,

3-..(if de-sired) to obtain M

S -X 3 i.~.k-i........(Al)
jk k

Fouriet transfarm the ti=e series (A16) d
017) to obtain tive D-ris.

Ik 3-0

V-i

at 0 r jk exp-(-i2f3jZIN) (aIS) c.1

t................ '-l
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IAttt oflie ovorvie ond th onirhsbationuted yedacnssetmdl
Tornerteanlssofaivpm sesit of convtio n is - dpe for asinn h

tratale t aybe on!-4-rdi s pa a revewr of reaons ariital ofstatanou p- ns ln
subsylew ssemled oethe bolnk or ricpe hs rece.ivenrcentwrca ceinete
bov rpreeningflw atnio For tesuo he direiof eedn upyi on .y theplrtyo

syte tso bedyoastieco the bond 14ra, must e proute of efort a flow.et el

disturbed by som forme (source of effort) Finally. because of a Iea - qraph~ cnvention
%ftich acts: along the bon*s. 7he sWA~ystss that the output of all elmnts initially i2
tber'-lver. are idealised into lumpd parameter positive. the sign of the input may have to he
evrxg dissipative units. capacitive storage inverted
%alts and Ini-rive storag units - in
mechaical txrm damers. sprizwgs ardAtrtiefausofheon r ehd

zases. T~we. defined by the product of t-, 7here are five main reasons for the attention
.ariables effort and Z'aw is transai.ted gie to the bond graphl method as imlmnted

al Cbtehes to these idealised singL, Port in recently available moelling pacages.
elents.
Surmysem whch %tiist conservinig poee ease of i deI chlange
alter (tzansfarre) the- ratio of ef-'ort and flow - .- n time interaction
are defined as ivo port *essats - idealie 0 physaical domin -Wq~ing
as tbe tr=%sfo-_vher and r*%- gyroz.or. ezr~mpes - potential ~cutation vith other asuels r
of wihieb are the pall"y and the fhye*el. . potential cotational efficiency.
T~o ty~ -f Power conser.ving Wiltiport
eemets are defined - one j-n ui.*d tbeye axe Do to the clarity %fticb is estblished in the
multiple cf fort inputs and a sinq, e output and conuruction of. for examle. a b1 qta 4
a - -I in %fidcb a single effort itrpt drives 4Al of an axle c~zcted to a suspension
=u'taple ortulzta. These arv- coidee2 as s-st a caected to P_ %ibel asemly. it is
JaXnrtz~o of como flea --Ad Jntos feasy to rmv sumpnion systes and to

eomo ffo=t =W=itute a replaonrt. eq. mas sring
The zwnit-_5e of powr flowing alrng a 1XIII a ir syste replacad by a lz-droelastic
~cnic-ng s~systm nay he modlated syst- with only lizited further effort
(scaled) by a 1-orLv u PW *emant- aw. using Qe iztezactive cuinssa prwide3.
V_ loss (or gain) of powr in the system Is a linear futiooC3 hity saay he introdi.d
.,s~icated vit= the modulating elesnt L with only xiniul d-.stutac of the model
a-y f rg inmediately rt--stributes fweq'r data 6tructure.
throug olther b~si- the systm, Intez-active r=r tim cccads enable the -

!be cgrcse and effect rela~icrudip between mdeller to Obtain infozattca from the moel
~cte~1d elwtil in the syst'_% is called dr~ag sixulation including the reformattrrqn
ccltf &:d deveainis wbether eff-Ort c-- of, gra-,bcal results and the 0ltezation of
flko is Uti_ dependimnt vzriable to the port. simlaton stepi tim.
Prefered causality is predelfind and is Stx thv sne of bc 3 graiph moeling an
systLicaly assigned. t2= rresn the sinclation is the study of effort andth
laptfoutpL - relaUccadrip. if the preferred rex=lta=t flow (or onzwersely flow %ftidi
camalifty hWO e ausigneld then. in a results in 10r.-es) Ah=u prov10nd the =sr -LS
restrxicted .=uber of cases- altermative careful to take racon of ~istect. Pmr
emets with qg'~osite cax-sauty uzy he units. roalty algratiom fves ozePhysical
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domain to another physical domain is
achieveable. This has been illustrated by
considering the garage ramp system ine wti- - 3 2
volts and resultant current drive an electricI
motor which in turn 4-.relops torque and
resultant angular velocity to turn ap.____
The pr- develops hydraulic pressure inducicg
fluid voluzetric flow which then forces the
ran, causing it to move (velocity$.
Commmicat ion with other models is achieved by '

relegating the xun tine- simulation of the z
model to a a'ort an subroutine which can Ma _________________

cogtanejd with other -ubroutinp simuzlations and
can be prgranned to furnish separate 2-. r. :IV ! a..
information stream for each time urariable of Via- ,.~ i ..- C: . CO*ft*
interest. Since interaction with each
similaticn is made easy, reprocessing of the
most recent tine step with altered simulation
interval. etc.. is facilitated. Ir
The particular attraction of this method cf U'

simulation arises from tie model being bruk*en icon and flow line chosen and comrises I
*down intcu a number of first order differential several fields: one containing the internal

equations and algeaic equatices. wi1th the coeof the chosen item: a second stating how
advent of more powerful optintising comilers iany 1ink-labels are attaced to the elemnt,
and parallel vector processors the potential fields containing arnicaue Labels for all link
for efficient solution beoe more attractIve attcmntzz the precedence for processing of

the tecord (this is default asigned to ensure
lleaknesms of the bod graph method that source of effort or f low is p rc essed
Fora.latuon of the informtion representing first to assist preferre cwusality but. for

*the bon graph into achine readable codes 3=utt imputs the a~eller may raize the
=appears largely to be a rule driven process precedence of a particular irpiut). 12-e last

providing no further insight into the field contains infamtion about the
synthesis of the model and an alternative and orthnoal 1plane ira %i.&i the picture was
more familiar method of expressing the -odel definied and is pase throg to the W-
and conveying it to the compter has benthe diensioning phase.
subject of a research investigation. !Vigue 2 S:M a SYSteM and the resultant dXa
.his has extend~ed into model validation and structlure.
progress of the investigation is reporbed 4

below- -

-he. Ortbod x~e is- governe by thr-ee pre
simulation phaises (a) graphical interaction to
construct and manipulate the "",I. (b) moel- l

valicatioa ald od generation. (c) Ie = C C= 'A .- ~a -4-4
-~ 2 2 3 1 -

d-e~i-ig fpci 3 2 4 5-

1NodI sys5thess and aniprlatiom 2-..I 3 2 -
3 2 3 4no adel builder asveles the mdel in e~o a 2 5 6 -2

ortgal planes vi'sual ised as ndn~with4
=depth of view. ;COMS representing the -

qraph elnets My be* Piczed from an Ain e=
and pzozec at aei red cord.nates in the* plane S

an-d -1inked toget-her to fora a rpetw~zk. sncecoe
~surs ray b gc ically distrlbad.
7-iWptlaton cCM=s f-., a displayed Mods el Validation

ar sdto ~Z=gn flow ine reprxeZIza Tbe flow 1=es from the qrrAphical phtase C* =t
stiff miassl= -trysical limits a=5 aids to Vr44--esen1t beCC iXe A bOM gr-Aph - thley OCUrejY
cos~itou amd cogte-s catcalated serve to Lndicate comecIVty in the
dinka-ons ray_ be lanooed - Tigure .1 shmm-wr- valzdate the moel. -a revi-seC
Mje screez layout fo7 a zomtitacal sysem.. ut-r conta%=%;ig the pce. flow ==m t t1.

~y i rcre~iog eurarybe comtrcted.
cmtralnts may be, zrpu d. meZ mab9Mot wig-ithe exampie t= Fiq19a 2- A~

aim=1= -d the saving. reXCVezY. starting wit ke %co Ueomc.)wthte
replicatiom and r iticanz of zssheyviMW hisest p:h lnar~i is

adthe e=Ztire Ie may te fIlIe a-d Proceed. Ludig the- CWutt of e-ac
r~~2=d 4l. n ur the ==wgct ;,f ---e zn" in

7he Cata stuue~ctdto the t2he 4Vhain. ltxcre paralelaf ccx ons the
Vaiiidation phsaz coWlei a rC=r for each szdazz i~s pcooessed %= t'-4- same way- 1he

trasfos~a io ofi~ae Ito ta4ble Z tn
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rigure 3 illustrates this operation. Sources Number each element in turn, then each
of effort or flow have a single output and no junction in turn, finally allocate an input
input and the remainder have a multiple of two for each effort and flow source in turn.
entries in the label columns - more than two Table 5 illustrates numbering.
entries indicating a splitting of power. From the causality table, allocate outputs.

Remembering that all efforts are common around
a 0 junction and all flows are common around '%.

Table I Table 2 Table 3 Table 4 Table 5 Table 6 a I junction, see Figure 4, and substituting
where necessary, allocate inputs derived from

9 9 the one-port elements, as in Table 6.

I I Comm,.on effort unction. Commn flow unctor..
* 4 5 N 1 3 a F- 0 eo=el=e2 f0=fl+f2 f0=fl=f2 ; eO=el+e2

VS 6 X 3 V 41 2 M41 -f2 *I

& V el f 11

*4 I -' 5 m' " f C

vi* 1 2X4 3K 40 7 N-2 0 Pb

*23 a A e64 ofr 0 7 e_

*L56 XecoO V $- 4 V-18 0 3 -f2- ~f 2
*3 C

f10 X-0

VfV-1 f74 Figure4

WY' . i- isioning
C..... .. :daa for a consistent bond graph

e iseffot 10 of. model has been generated thon the magnitude of
f iI f each variable (in self consistent units) mustf is flow

be allocated by the modeller. To assist in
this, each element in turn is presented
pictorially in the context (plane) in which it

Figure 3 was originally drawn and a, ropriate values
elicited.

The rules to process the model are as follows: Once all values have been obtained and the
for each element in turn, look up causality to time step specified then the bend graph
determine the preferred independent variable: simulation package solves the model over a

If causal stroke is from the element, then presented time interval.
the independent variable Is effort and the .-

bond forms the sole effort tnput to a 0 Conclusions
junction. Attach junctions. The method described above has been used
If causal stroke is to the element, then the successfully to built simple models but, eg,
independent variable is flow and the bond automatically invoking transformers to
forms the sole fLow output from a I represent pivot ratios of geometrically
junction. Attach junction. distributed systems has failed so far.

For each junction in turn: Further developments for a European Economic
If junction is 0 junction then the input Communitv study on vehicle dynamics in
is effort and all other efforts are connection with road safety are planned.
determined on the other bonds and must all
be outputs. Acknowledgement:
If junction is a I junction then the
output is flow and all other flows are This work was funded by the Ministry of
determined on the other bonds and must all Defence, UK, whose support is gratefully
be inputs. acknowledged.
Table 3 illustrates causality. The author is indebted to M4..s A. Norman and

Mrs. B. Jeffes for programing the package. Vqm-r'
For each bond in turn, follow the path
directed by causality. If tnconsistency References:
detected then back tra.. to nearest resistance
or integral causality and substitute i Didioorn, J.J. Van, Simulation of
conductance or derivative function. Bond Graphs on Minicomputers,
Recommence from beginning of path. If no J.DYN.SYSTEMS, MFAS, CONTRO,,
substitutions left and still inconsistent then TRANS ASME, Series G, 99, No. 1,
model Is incomplete. 9-14, March 1977.
Commencing at the highest precedence elements,
assign power bond for each element in turn, ii RARDE Division Note, PAI/3/86,
remembering that bcth effort and flow are The study of off-road dynamics of
inputs to the system. Table 4 Illustrates wheeled/tracked vehicles,
power flow. Ministry of Defence, London. 'k

105

. N % % %,=

. ,: ,4" '. , '% " . , --. % 4" " ',r ,r'r', --- -,-'r-. -,- --. --.. : .--- ,-- ,- .-. .-.- "



Dynamic Response of a Geared Train of Rotors

Subjected to Random Support Excitations

S.V. Neriya, R.B. Bhat and T.S. Sankar

Department of Mechanical Engineering

Concordia University, Montreal, Ca-'da 4
The response of a geared train of rotors subjected to random support

excitations is investigated. Support excitations occur, for instance, on board
movinq vehicles. These excitations are in general random in nature and the
response can be obtained using a statistical analysis. In this paper, the
geared train of rotors is modelled using finite elements and the coupling
between torsion and flexure is considered. The geared rotor system is excited
by a displacement type of support excitation which is the oitput of a filter,
the input to which is a Gaussian, stationary process with a white noise type of
PS. The excitation is assumed to be in the vertical direction only and the
excitations through the supports are assumed to be uncorrelated. Results for
the response power spectral densities are presented for two kinds of filters.

INTRODUCTION geometric eccentricity, e. Dynamic coupling
is of the order C2 [2) and is neglected inRotating shafts are indispensable in this analysis. Several investigators have

mechanical power transmission systems. Dynam- also studied rotors subjected to random sup-
ic responses of such rotating shafts must be port excitations. Lund [7] carried out
clearly understood for their design. As is response spectral density analysis of rotor
very common in power systems, gears are often systems due to stationary random excitations Al
employed to transmit power between shafts, of the base, considering excitations only in N.

the vertical direction. Tessarzik et al [8]
In a geared rotor, some of the sources of analysed the turbo-rotor risponses due to

excitation are mass unbalance, geometric external random vibrations. :he rotor-bearing
eccentricity and errors of manufacture, all of system was treated as a linear, thtree mass
which originate in the gear pair itself. model and experimental results were found to
However, the geared rotor system may be sub- compare well with calculations of amplitude .

Jected to external forms of excitation such as power spectral density for the case where the
that from the supports, for instance when on vibrations were applied along the rotor axis.
board various types of vehicles. If the used. Subbiah et al [9] obtained the ampli-
support excitations are random in nature with tude PS0 of a simple rotor subjected to random
considerable power distributed vver a freq- support excitations using modal analysis O
uency range, the system will respond at those methods. The excitdtiuns were assumed to be
frequencies. Moreover, if one of the system stationary and Gaussian with a white noise
natural frequencies of the geared rotor coin- type of PSD.
cides with the excitation frequencies, the
resulting response may be of concern. In this paper, the geared rotor system is

There have been several studies on the modelled using finite elements and the coup-
ling between torsional and flexural vibrationsdynamics of gear systems, but only a few of is considered. The geared rotor system is

them have taken Into account the coupling subjected a displacement type of support
between torsional and flexural motions [1-6]. eaexcitations which is the output of a linear
In a geared rotor system, the torsional and filter, the input to which is a Gaussian,flexural motions are coupled due to the pres- stationary random process with a white noise
ence of mating gears. The coupling occurs in type of PSD. This excitation is assumed to be
two distinct forms, 1) force coupling and 2) in the vertical direction only and the excita-
dynamic coupling. The predominant form Is the tions through the supports are assumed to be
'force coupling'. This is due to the lateral uncorrelated. The PSO of the response process
mesh forces generated by torsional oscilla- is then obtained using a statistical analysis.
tions of the shaft and is of the order of the ,
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NOMENCLATURE Kzz stiffness of the rolling contact
bearing In the z-direction

Cb flexural damping of the driving shaft global stiffness matrix
Cb2 flexural damping of the driven shaft it length of te beam element

t average flexural damping of the gear mli mass of the driving gear in the
tooth in the z-direction ith gear pair

Cry average flexural damping of the gear mi mass of the driven gear in the ith
tooth in the y-direction gear pair

C, lumped torsional damping at the IN global mass mitrix
driving gear N number of degrees of freedom of

C2  lumped torsional damping at the driven the system
gear

n numer of gear pairs
[C] global damping matrix

[CI glbaldapin mtri {1I modal coordinate vector
Cm lumped torsional damping at the motor 1q} generalized rotor displacement

Cd lumped torsional damping at the vector
dynamo jqrj relative displacement vector

Ft tangential component of the trans-
mitted force {qs} support displacement vector

Fr  radial component of the transmitted rll base circle radius of the driving
r.-force gear in the ith gear pair

IFIR Random Support excitation force r2i base circle radius of the driven gearRin the ith gear pair

NMI[H(jc)f frequency response function matrix [ matrix of the force PS0

Ili moment of inertia of the driving gear m xein t e i h g ar air[Sqr(U) matrix of the relative displacement
in the ith gear pair PSD

12I moment of inertia of the driven gear
in the ith gear pair [Sqs(P) 0 matrix of the support displacementPSD

J1 moment of inertia of the motor [y] diagonal damping matrix

2 moment of inertia of the dynamo l geometrical eccentricity of the

Kbl flexural stiffness of the driving driving gear in the ith gear pair
shaft 21 geometrical eccentricity of the

Kb2 flexural stiffness of the driven driven gear in the ith gear pair
shaftI modal damping in the ith mode

Ktz average flexural stiffness cf the gear Dfli angle between the directions of
tooth in the z-direction unbalance and eccentricity for

the driving gear in the ith gear
Kty average flexural stiffness of the gear pair

tooth in the y-direction
ef2i angle between the directions o

KI  torsional stiffness of the driving unbalance and eccentricity for
shaft the driven gear in the ith gear

pair
K2  torsional stiffness of the driven [K] diagonal stiffness matrix

shaft

K stiffness of the rolling contact Xi ith elgenvalue
Kyy bearing in the y-direction [p] diagonal mass atrix
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Jo(t)) generalised force vector the modal coordinates (p) as
1{') = [4,] (p) (3)

14,1) ith elgenvector

ANALYSIS where [4] Is the modal matrix formed usingANALYSISthe eigenvector 14,1)

In the present work, the geared rotor
system is modelled using finite elements [I0,- Usig Eq, (3) in v.' 'nd premultiplying by

ll. In general, the rotor finite element [d,] we get,
considers gyroscopic effects in addition to
rotating inertia and shear deformation [p] {P1 + [y] {1 + [K] {P {o(t)1 (4)
effects. However, the gyroscopic terms are
skew symmetric in nature and hence a simple where [1, I[4,11 [M] r4]
normal mode analysis is not possible. A modal
analysis employing biorthorganility relations [],]T [K] [,] (5)
[12] is capable of considering the skew sym-
metric gyroscopic terms also, however, for
simplicity a normal mode analysis was resorted {a(t)} = [41]T {FIR
to in the present study by neglecting the
gyroscopic effects. The finite element dis- Now 1pit)} = [H(w)] {o(t)1 (6)
cretisation of the geared train of rotors is
carried o't as follows. The shafts are divid- where HIM (7)
ed into beam elements and each node has 5 where Hi(w) t 2) +  (2Ctt
degrees of freedom. The contact point of the
mating gear has two degrees of freedom, one in
the z direction and the other in the y-direct- and Ci Is the modal damping rati.

ion. The element mass and stiffness matrices
are obtained from the consistent formulation The PS matrix of the response
and are then assembled to form the global mass obtained as
and stiffness matrices. The elemental mass
matrix is the sum of translational and [Sqr(w)] [41 IH(iw)] [41  [SF(w)] [41
rotational mass matrices. These are obtained x [ 4r]T (8)
from [10]. The concentrat d masses and
inertias (including transverse moment of The PSO matrix of the random excitation force
inertia) due to the motor, dynamo, gears etc.
are introduced into the appropriate locations [S (t)] can be expressed in terms of the PSI)
in the global mass matrix. The stiffnesses of matrix of the displacement support excitation
the rolling contact bearings are included in
the analysis. The coupling between torsion [Sqs(w)aand flexural obtained from a study of the as
dynamics of the gear mesh (see Appendix I) are [SF(.) ] = .4 [M] [Sq(.) ] [Hi (g)
introduced into the appropriate locations in qs
the global stiffness matrix. The displacement support excitation is

assumed as the output of a iinear filter, theThe equations of motion for a N degree of input to which is an excitation in the verti-
freedom geared shaft system subjected to sup- cal diection only. This excitation is an
port excitations can be expressed as uncorrelated Gaussian stationary process with

a white noise type of PSD.
[M] lqr) + [C] lqr) + [K] lqrl = {F)R(1) NUMERICAL RESULTS

where 1q = generalised rotor displace- A geared train of rotors employing two
ment vector pairs of gears is used to obtain the numerical

results. The details of this system are given
JqsJ = suoport displacement vector in Table 1. The pedestals through which the

support excitations are transmitted to the
qrl= Iq - qs}, is the relative displace- geared rotor system are denoted by k and k

ment vector, respectively. The finite element dAcretisa-
tion of the above system is shown in Fig. 4.

and {FqR -MI 1qs1 (2) The shafts are divided into beam elements 1 to
7 and the ten nodes of the system are denoted

The homogeneous form of Eq. (1) neglect- by a to J. The details of the beam elements
Ing damping is solved to obtain the eigen are given in Table 2. The details of the
values %I and eigen vectors { 1 } of the system natural frequencies are given in Table
system. 3. The details of the linear filter are givenin Appendix 11.

Expressing the response (qr} In terms of iA n I
The normalized PS of relative amplitude
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.... ~ ~ ~ ~ ~ ~ 3 lia H. Taua A. ......... K. and-.. ... ' v:'v

in the y direction at the driven gear location 3. llda, H., Tamura, A., Kikuch, K. and
is shown in Fig. 5. The base excitation is Aata, H., "Coupled Torsional-Flexura1
assumed to be the output of a first order Vibration of a Shaft in a Geared System
linear filter, the input to which is an uncor- of Rotors", Bulletin of the JSME,
related white noise type of PSD only in the Vol. 23, No. -
vertical direction, and this is plotted on the 2111-2117.
x axis. The PSO plot shows peak response at 4 Nerlya, S.V., hat, R.B. and Sankar,
modes 2, 3 and 7. There is also a peak .Sr, "Effec t RBCupl d Sinal
response observed midway between the modes 8 Flexural Viration of a Geared Shaftand 9, which are very close to each other. Sseu of T h ad Shock
The maximum response Is seen in mode 8 and System of the Dynamic Tooth Load", Shock
corresponds to about 0.1 m2/Hz. and Vibration Bulletin, June 1984.

A smilr PD pot s i Fi. Susig a 5. Neriya, S.V., Bhat, R.B. and Sankar,
A iia S lta nFg sn T.S., "Coupled Torsional-Flexural- Vibra-second order filter is shown in Fig. 6. T h eti n o a Ge r d S ft ys m u i g

behavior of the response is the same as in Finite Element nalsis", Shock andFig. , but the magnitude is lower for a Tinit "oledn Anra Vhba-
mgiuei loe fo alVibration Bulletin, June 1985.

dP of relative amplitude 6. Iwatsubo, T., Aril, S., Kawal, R.,
at the driving gear loca- "Coupled Lateral-Torslonal Vibration of

tion is shown in Fig. 7. The base excitation Rotor System Trained by Gears", Bulletin
is assumed to be the output of a first order of the JSME, Paper No. 224-,F.
linear filter, the input to which is an uncor- TM -
related white noise type of PSD in the verti- 7. Lund, J.W., "Response Characteristics ofcal direction. The PSD plot shows peak 7. LnJ.,"eoseCactrtiso
response at modes 2, 3, 7 and 10. The maximum a Rotor with Flexible Damped Supports",
PSD response of about 0.1 m2/Hz e a Symposium of International Union of .

ispne 2 H observed at heoretical -and Applied Mechanics,
rodes 3 and 7. The resnonse at the driven T
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TABLE 1

Details of the Rotor System under Study 4

E 1.96 x 1011 N/M2

G 7.84 x 1010 N/M2

Ill,112 0.03 kg M2

121,122 0.0628 kg M2

J1 0.459 kg M2

J2 0.549 kg M2

ty 2.17 x 109 N/m

{tz 2.60 x 1012 N/m

kyy 8.83 x 108 N/rm

k zz 8.83 x 108 H/m

m11,'m 12 16.69 kg

m2 1,m2 2  5.65 kg I,..

(mtl)i,(m ti)i (1 1,2) 0.0049 kg

r 11 ,r 12  0.1 m

r21,r22  0.05 m

TABLE 2

Details of the Rotor Elements

Mass per
Element No. Length m Diameter m unit length

m kg/m

1 0.35 0.020 2.51

2 0.3 0.015 1.41

3 0.3 0.020 2.51

4 0.6 0.020 2.51

5 0.6 0.030 5.655

6 0.3 0.030 5.655

7 0.3 0.025 3.93

%I
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TARI C -
System Natural Frequencies 0 - 80 Hz m2iz2i+Cb2iZ2i+kbziz2i+ktzi(Z

2i+c2icOS82iSystem2
Mode No. natural zt2i )+Ctzi (2i-2i isine21".t2i )U 2 io2i 2

fre uencyatura(

100cos(()2i+ef2i) 
(2)

1 0.0

2 7.18 ~(jeil3 32.218 mliYli+Cbli~li+kbliYli+Ctyi iciq v
3 32.21

4 33.72 cos e11 +rl i1611 "tli )+ktyi (yli+cli s i n G1i
5 34.71 +rjiG~i-Ytl i ) --Uji~li2 sin(el1+Ofli) (3)

6 34.71 .L3

7 40.80 m2iY2i+Cb2i2i+kb2iY2i+CCYi (Y2i+c2i)2i8 69.53 cOs2i+r2i2i-t2i )+kty (y2i+c2isine2i

9 71.21 +r2 ie2i-yt2i)=U2§.2i
2sin(02i+f2i) (4)

10 72.59 i.9
APPENDIX I Mtiiztii4Ctzi(tii..ii+ciilisineii)

A schematic representation of a geared
train of rotors as shown in Fig. 1. A +Ktzi(Ztli-zliclicosOil)=-Fri (5)sectional view x - x at the i th gear pair
location is shown in Fig. 2 and it shows the
relative positions of the driving and driven mt21zt21+Ctzi(Zt2i-z2i+c2icisine2j)gears .01 and 01' represent the geometric Ncenters of the driving and driven gears; 02 itz(zt2iz 2 e2 icOse2 )=F. (6)
and 0 ' represent the centers of the driv- K1P
ing and driven shafts when they are rotating
and 03 and 03' when they are stationary. - -
There exists a coupling between the transla- mtiYt~l+Ctyl()tli-li-lil l i.r )tional motion of its gear center, y,z, and
the rotational motion of the gear 8. At the +,tyi(Ytli.Yliclisinelirlioli)= (
gear location they correspond to the flexur- )-t 7

al motion of the shaft carrying the gear andits torsional motion. Fig. 3(a) shows the -spring mass representation of the driving mt2iy2i+Ctyi(Yt 2 i-c 2 i 2icose2i.r.O)gear in the i th gear pair. The mass of the 2i2 )

driving tooth is denoted by mt The co-
ordinates YtHi and dj1i escribe the gear -Ety(Yt2p"2rc2  sin2ir 2 i82 i )=Ft 1  (8)
tooth motion. The t me average stiffness
and damping of the gear tooth in the y and zdirections are denoted by t zi, Et i llRlti lty (Yi+e li~1 lCS6li
and Z -respectively. kbli aXAdcb i den tethe stiffness and damping of the sfaft car- ii Ytui)rl+cliCOSe1 i)rying the driving gear. The driven gear fori th gear pair is similarly modelled and is +Ktyi(Yli+lisinBi+rlioi.Ytli)(rli
shown in Fig. 3(b).

The dynamical equations of motion for +il i i = 0 (9)
the gear pair described above are derived
following the approach in [4]. The effects
of varying tooth elasticity and backlash are I2i 82i+k2i(02i-02)+Ctyi(2i+2i2icos82

ineglected in the analysis. The equations of
motion are: +r2102i-;t2i)(r 2i+E21cose2i)

li Zli +Cbl ili +kbli zli +iKtyi (Y2i+2i si no2 +r21e2i "yt2i ) (r2i +2i

+Ktzi(Zji+Clicosei-Zti)+Ctzi(ii lili 'osB2 1)+C2 i§2i 0 (10)

sineli-4 1tl i o i li 2COS(E il fl i)  (1)
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1 0 ,

The condition that the mating teeth rin The equations of motion are simplified and

in contact is given by: put in a matrix form, from which we obtain

the stiffness terms coupling the torsional
Yt1i y t2i and flexural Motions and also the forces

occuring at a gear pair.
zti zt21 11

a. Stiffness Matrix

z2Ktz 0 _ 1  *tr 0 0 0 0

*Yti 0 Sty 1 0 0 Yty i -tyi -7t i r i Ytyi r 2i

I-A

X -,tz 0 'rtz 0 0 0 0 04

tz00 l 0 0 0 0z-,- K 0 0 tyi.ii

'21 tyi tyl 0tyl 2

O0 21 - tii 0 0 0 K 0 fr ty80 - r 0 0 0r 0 ~

0 0 ~ K~ri 0 0 0 r ti 2  0 r r0
21i tyi 2i yiI

Appendix II

Output Y(t), Input X(t)

Order Gc.erning Equation IH(j.)1 2

Ii.

First + Y= X -

Second aY + Y+YX (1-
_______~~~~ W________ ,2) 2+_ 2

a 1.0
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X ith gear pair

I Jz Flexible
Xzi .1 ing

I I

~Fig. 1. Geared train of rotors

I -

01 geometric center of the driving gear

01 '  geometric center of the driven gear
0°ge 02  center of the driving shaft when it is rotating

ge center of the driven ea r
C 02 center of the driving shaft when it is rotating

0. 2 03 center of the driving shaft when it is stationary) ~~~~03' center of the driven shaft when It is stationary.!j _ 0'tr/

/ 01

C I
.-
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Fig. 7. Normalized PSD of relative amplitude in the y direction at the driving
gear location (DOF 146) against the frequency of excitation. First
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-Fig. B. Normalized PSD of relit~ve amplitude in the y direction of the diven
gear location (DOF 140) against the frequency -f excitation. Second

order filter used. -
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THE DYNAMICS OF AN OSCILLATING FOUR-BAR LINKAGE

Ping Tcheng, Senior Engineer
Langley Research Center, NASA
Hampton, Virginia 23665-5225

The design, analysis and application of a unique oscillating double four-
bar linkage is described. The Lagrange equation for the slightly damped
second-order system was derived and verified experimentally. System

natural frequencies ranging from I to 30 Hertz with a damping coefficient
less than 0.001 were observed. Special dynamic characteristics of this
linkage and results of a shake test were presented. Various instrumen-

tation application of this simple but rugged mechanism are included.

INTRODUCTION The unique features of the linkage can be
and have been utilized in various applications. Y

This paper describes the design, analysis Several transducer designs ucing this simple
and application of a unique oscillating double linkage as the motion and/or force sensing ,."

four-bar linkage. This linkage is made with two element are discussed.

rigid platform links, two coupler links, a fixed
link and six flexural pivots. The flexural
pivots which serve as torsional springs are the SYSTEM DESCRIPTTON

key elements of this lumped-parameter, single-
degree-of-freedom system (1]. Nearly sustained The double four-bar linkage is symmetrical
oscillation is achieved as the result of restor- and shown in Fig. 1. It consists of two plat-

ing moments being generated within the pivots as forms each of mass M, two coupler lin" q each of
the system is disturbed. mass m and length X, six flexural pi-ots each Jl

with torsional stiffness Kt and a fixed link

The equation of motion of this slightly t'st serves as the ground. There are threedamped second-order system vias derived using the pivots installed on coupler link. Connection --

energy method and was verified by experimental between the moving plattorms and ground is

setups. System natural frequencies ranging from provided through the pivots mounted at the
1 to 30 Hlertz were observed experimentally by midpoints of the two coupler links.changing the dimensions and masses of the
experimental setup. An extremelZ low dampingSY T M N L I
coefficient, with C - 2.6 x 10- , wa6 cal- SYSTEM ANALYSIS
culated from oscillation data.

The accompanying appendix ptovides the
Analysis indicates that this linkage iR derivation of the equation of motion of the _ J_

insensitive to either gravity or inertial system. The ,uation of motion of the system
effects commonly associated with pendulous svbjected to a horizontal :orce f applied on the
systems. In other words, the Zwo platforms can top platform is
be arbitrarily shaped independent of each other AAU
as long as they are counter-balanced with equal 1 2
masses. This is a useful feature in any closed- 2(T m + M) x + 24 Kt/ x f (1)
loop instrument design application. Motion of
this system caused by ground excitations has
also been analyzed. It has been proven and where x is the rectilinear displacement of the
verified by a shake test that relative motion platform and f is the external force applied on
between the platforms and ground is zero for the platform parallel to x (see Eq. (A12)).
rectilinear ground excitations. Relative The natural frequency is

motion, however, does exist for rotational 1/2
ground excitations. I 12K 1

) 2 (2)
n 1
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In the folowing, several unique charac- variable differential transformer). Extremely
teristics of the linkage are presented. small values of the damping coefficient ;

amounting to 2.4 x 10- 4 and 2.7 x 10-4 were
(1) Note that the gravitational constant, calculated from two different runs.

g, does not appear in Eq. (2) and the selection
of system natural frequency then depends only on
the link length £ for given flexure stiffness Static Calibration of the Flexure Stiffness
Kt and the two masses M and m. Frequencies
from a fraction of a Hertz to 30 Hertz can be A string calibration stand described in
easily realized. The absence of the gravita- Ref. [2] was used to determine the system
tional constant further indicates that the stiffness statically. The calibration stand is
system is insensitive to inertia effects in- schematically shown in Fig. 2. As dead weight
herent in pendulous systems. The two platforms is added onto the weighing pan, tension in the
can be therefore arbitrarily shaped independent horizontal string will displace the moving
of each other as long as they are counter- platform. By using a theodolit? and adjusting
balanced with equal masses. In other words, the vernier screws on the calibration stand, a
if additional masses, e.g., an instrumental truly horizontal string force of precise magni-
package, were placed on one platform, counter- tude can be applied to the moving platform. The
balancing with dead weights on the other static force-displacement relationship thus
platform statically will insure dynamic balance, observed Pan be used to find the flexure
This is certainly a very useful feature in stiffness from Eq. (1). By setting 1 i 0, the
transducer design. flexure stiffness becomes

(2) The linkage is also moment insensitive. Kt - (Z /24)(f/x) (3)

That is, the external force f can be applied
anywhere on the platform and identical response The ratio f/x used above is the slope of the
would result as long as the horizontal component static force-displacement relationship.
of the external force remains unchanged. This Experimental data indicated that the force-
is true because moment arm does not appear in displacement relationship is very linear, and
Eq. (1). the computed stiffness agrees well with value

quoted in Ref. [3].
(3) The derivation in the appendix further

indicates that the relative motion between the
platforms and ground is zero for rectilinear Dynamic Calibration of the Flexure Stiffness
ground input motion. The insensitivity of the N
platform to this type of ground motion is Consider the system with adjustable link
analogous to the response of a semidefinite length shown in Fig. 3. Additional masses were
vibrational system where the system may move as placed on the platforms, and oscillatiou data
a rigid body without disturbing the forces were taken for two different link lengths. The
acting upon it [4]. results are shown in Table 1. It can be shown

the natural frequencies are

(4) The system, however, will respond to t

*angular ground vibrations. This should become 12 /2. r 1/2
obvious if one notices that the primary mode of t t ]

motion of the linkage is rotation about the n" J +) + 2.25

z-axis. The system's equation of motion to this
type of input is included in the appendix.

for £ = 9.00 in (0.2286 m), and

EXPERIMENTAL RESULTS

The equation of motion derived in the ap- 1 /2 
/
2

pendix was verified experimentally. Different .t + ( + 12methods to experimentally determine the two -

masses M and m, flexure stiffness Kt, and

the damping coefficient are described. The o
results of two shake tests that were conducted for 6.00 in (0.1524 m).

to verify some of the linkage characteristics
are also presented. Now, for the same M, the flexure stiff-

ness Kt computed from the two above expres-
sions should be identical. Eliminating Kt and

Determination of the Damping Coefficient rearranging algebraically yields the following
expression

The damping of the system was determined
experimentally from free oscillatory data. The 2 - 2
rectilinear displacement of the platform of the m n n

free vibration was measured by an LVDT (linear (H + A) 3(' 2 
-

2 )
n n

122

(K % ":N.



Using the experimental values listed in seen that the platfort are insensitive to this
Table 1, the mass ratio m/(M + 6M) is found to type of ground motion input over the tested
be frequency range. Resonance at 3.15 Hz, which is

the natural frequency of the linkage, was ex-
m/M - 0.7250, pected E nce no special effort was made to

-tatical]y balance the linkage precisely. A
m/(M + M') = 0.3267, second resonance around 40 Hertz was also noted.

It is assumed that that came from the higher
m/(M + 2M') - 0.2125, laternal stiffness of the flexures as reported

in Ref. [1).
and

The same linkage was then modified with
m/(M + 3M') = 0.1556, extra washers added on the platforms and shake

tested again. In several cases, the linkage was
where the incremental mass M' used is made unsymmetrical but statically balanced.

Except for different peak values and a slight
M' - 7.764 x 10- 3 slug (0.113 kg). shift in resonant frequencies, the frequency

responses basically remained unchanged qual-
The average platform mass and coupler link itatively and hence are not reported here.

mass are next calculated as V
The symmetrical linkage without the add-on

H - 6.39 X 10- 4 slug (9.33 x 10-3 kg) washers was next tested on a rate table (Model
823, Inland Controls, Inc.). 'Frequency response

and data of angular displacement ratio, 0/ , is
presented in Fig. 6. The dashed line included

m - 4.64 x 10-4 slug (6.79 x 10- 3 kg). in the figure is the asymptote of the dampless
second-order term derived in the appendix (see

Finally, using appropriate values of H, Eq. (A19)). The resonant frequency at around
m, X, and wn for various AM, the flexure 3.1 Hertz is clearly seen. Deviation between
stiffness can be readily calculated. The re- the experimental data and the asymptotic re-
sults are shown in Fig. 4. sponse for frequencies above 10 Hertz is to be

assumed caused by the lateral motion of thelinkage.

Shake Test

Two different types of shake test were con- APPLICATIONS 4
ducted. A linear test was used to verify the
system's insensitivity to rectilinear ground The unique features of the linkage can be
input and a rotary test to check for system's and have been utilized in various applications.
characteristics. A new set of flexures were Two simple applications are given below:
used for this series of test. For this reason
the natural frequency of the system for this (1) A source for generating rectilinear
series of test is different than it was before. vibration signals, and
The test results are presented as follows.

(2) A standard for calibrating damping
The symmetrical system shown in Fig. I was coefficients of iscous fluids.

tested on a long s:'roke shaker (Model 113,
Acoustic Power System, Inc.). Three servo Transducers can also be designed using the
accelerometers (Model Q-Flex 2000, Sunstrand linkage as a force and/or motion sensing ele-
Data Control, Inc.) were mounted on the linkage, ment. Two applications are given below:
one on each of the platform to monitor its
response and the third one on the fixed link to (1) A skin friction force balance.- In this
monitor the inputs acceleration. Sinusoidal application, a linear force motor is mounted on
inputs with frequencies ranging from 2 Hertz to the lower platform which exerts a restoring
50 Hertz were applied to excite the linkage, force to null the skin friction force applied
The input signal was set at a one g level with a tangentially to the surface of the upper plat-
power amplifier (Model 114, Acoustic Power foru over which air flows. The applied skin
system, Inc.). The accelerometer outputs were friction force is measured by sensing the amount
measured by a digital multimeter (Model 8520A, of current thrcugh the motor coil necessary to
John Fluke Mfg. Co., Inc.). achieve null positions. The special vibration

isolation char-cteristics of the linkage also
The test results are presented in Fig. 5. make the balance ideal for flight testing.

The top curve is the frequency plot of the ratio
of top platform displacement, xt, to the input (2) An angular accelerometer.- The skin
displacement, y, while the lower curve is the friction force balance can be used as an angular
frequency plot of the ratio of bottow platform accelerometer for measuring rotational ground
displacement, x1, to the input displacement y. excitation. As a special case of this
Several observations are made. It is clearly
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application, the device can be considered as a v is the absolute velotity of the center of
tilt meter. ;&ss of the platform.

Note that
CONCLUSIONS

It has been found that the oscillating Vp 1/2

linkage described can be conveniently designed L
and constracted using flexural pivots. The and
equation of motion of the system was derived and
verified experimentally. The system was shown I - 1/12 ml2I - 112 ME(A2)
to possess negligible damping and vibration iso-
lation capability. Unique characteristics of
the system 'ere discussed for transducer Substituting Eq. (AZ) into Eq. (Al), the
designs. total kinetic energy can be expressed as

REYtRENCES T + M (1 ) (A3)

[1) Free Flex Flexural Pivot Engineering Data, Because of system symmetry, the potential energy
The Bendix Corporation Electric and Fluid gained by one platform always cancels out the
Power Division, 221 Seward Avenue, Utica, potential energy lost by the opposing platform
Hew York 13503. when the system is in motion. The potential

[21 Mason, W. T., "Calibration of a Multi- energy change of the coupler links is also zero
e isince its center of mass is fixed. Therefore,

Component Micro-Force Balance System for energy stored in the flexures is the only form
Wind Tunnel Model," M.S. Thesis, Mechanical of potential energy possessed by the system and
Engineering Department, University of this can be expressed as
Virginia, Charlottesville, Virginia, June
1966.

[31 Seelfg, F. A., "Effectively Using Flexural V - 62 Kr 2)C)
Pivots," ASME paper 70-DE-51, presented at
the Design Engineering Conference and Show, The Lagrangian of the system is therefore
Chicago, Illinois, May 1970.

[41 Tse, F. S., Morse, I. E., and Hinkle, R. T. 9 S T - V
Mechanical Vibrations, pp. 110-113. Allyn 2 ) 2
and Bacon, Boston, 1963. 4  + M) (1 ) 3 K 0 (A5)

APPENDIX Noting that

DERIVATION OF THE EQUATIOP OF MOTION OF THE
SYSTEM ;U/3; m • + M A 8 (A6)

Consider the single-degree-of-freedom and
system shown in Fig. 1. It consists of two
identical platforms each of mass H, teo uniform - -6 Kt0 (A7)
coupler links each of mass a and length L, t
six flexural pivots each with torsional Largrange's equation finally becomes
stiffness Kt  and a fixed link. I + M) t E2 (S)

The total kiretic energy of the system is 2 m+ 0 + 0-0 (AS)

This ic the differential equation for the
T T +T system. Since the equation is linear, it is not

restricted by the small angle approximation

M I2 (Al) assumption.

The natural frequency of the system is
where Tc  and Tp are the kinetic energies of

the couplir link and platform, respectively, I 6Kt 1/2
!s the *oment of inertia of the coupler link W - (A9)
about a parallel axis through its center of n I-
mass, 0 is the angular displacement of the 22 +

coupler link about the axis of rotation and
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The horizontal motion of the platform can equation of motion were then derived, it would
be found from the following relation be noticed that cross-coupling would not exist

among the three generalized coordinates e, y
x - /2 8 (AI0) and z. Consequently, Eq. (A8), which was de-

veloped for the system not subjected to ground
where 0 is the solution of Eq. (M8). excitation, is also valid for the same system

subjected to translational ground excitation.
Substituting Eq. (AIO) inoE.0) h et- Furthermore, since the system does not respond
linear motion of the platform is found from the to eny excitation in the direction orthogonal to
following differential equation: the yz-plane either, it can be concluded that

motion of the system is completely isolated from

2(lm+ M)x+ 24 Kt/12 0 (All) rectilinear ground vibrations.
As for an angular ground motion input *,

If a horizontal force f is applied on the the system equation of motion can be derived as
platform, th systea -equation is modified as: M)

/I/£ - 2 3 z e 2 + 6 kt .k tf (AI7)

V34 a + M) x + 24 K /l. x - f (A12) +H)'0 6k k(A)

This is a typical undamped second-order
This differential equation can be viewed as equation subjected to a motion input in which

describing the translational motion of a spring- output 0 follows the input + at the low
mass system with an equivalent mass of frequency end.

2(3 , + iand an equivalent spring of stiffness

24 3K . 1 2. Note again that the small angle TABLE 1

approximation is not used in the above EFFECT OF ADDED MASS ON NATUkAL FREq(JENCY
derivation.

In the following, the equation of motion of Added Mass, Natural Frequency"
the system subjected to rectilinear ground mo- _ ____

tion is derived. Assume that the system is ex- w '

cited by ground motion y and z as shown in slug (kg) n ran
Fig. 1, the kinetic energies of the two plat- -ad/sec rad/sec

forms are respectively expressed as 0.0 (0.0) 9.173 12.34

7.764 x 10- (0.1133) 6.359 9.002
lp e " ((z 1/24 sin 0) ( - "/20 cor 

]  
0.01553 (0.2266) 5.152 7.427

0.02329 (0.3399) 4.436 6.458 S
M ; - 1 /2 1 *1 . )2 /2 1 . ) ') N o t e w n a n d W ' n  a r e t h e n a t u r a l f r e -

quencies of the system c' link length of
The total kinetic energy of the two 9.00 in (0.2286 m) and 6.00 in (0.1524 m),

platforms is therefore equal to: respectively.

T -T+T
p p, lower p, upper

M[y + +(.t)2/41 (A13)

and the potential energy of each platform is

V -V M g z (A14)
p, lower p,upper

The kinetic energy and potential energy of
each coupler link are respectively

T _L m (y + ;2) + 1/24 m (L ;)2 (AIS)

V C-2 ag z (A16)

The Lagrangian of the syst-m can be formu-
lated in the usual way using en;ergy expressions
shown from Eqs. (A13) through (A16). If the
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Figure 1. Oscillating four-bar linkage 1
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MODAL TEST AND ANALYSIS

CENTAUR G PRIME MODAL TEST

Marc Trubert
Jet Propulsion Laboratory,

California Institute of Technology, MS 157-316 __

4800 Oak Grove Dr., Pasadena, CA 91109

Art Cutler
General Dynamics Space System Division, MZ C3-8830
P.O. Box 85990, San Diego, CA 92138

Robert Miller
NASA Lewis Research Center, MS 500-120
Cleveland, OH 44135 .

Don Page
General Dynamics Convair Division, MZ 23-6610
P.O. Box 85357, San Diego, CA 92138

Charles Engelhardt
Structural Dynanics Research Corporation
11055 Roselle St., San Diego, CA 92121

A nodal test was conducted on the Centaur G Prize upper stage and its
support structure for which the primary purpose was to verify and/or
update the mathematical model used for preflight validation of the STS
flight. The unique character of the test was its successful completion
in a configuration and environment as representative as possible of
those of the flight condition. In that respect: (1) the actuai flight-
type latches with their inherent play, backlash and friction, were used -0
to support the test article at the eight points of attachment as they --(.
would be in the Shuttle Bay, (2) the Sine Dwell method of testing was
used in order to attain the highest possible level of response in the
structure. The objective sought in measuring normal nodes at high level
was to obta -n a valid, yet simple, linearization of the otherwise
complex problem of the lateral friction of the trunnions in the latches
and their backlash. A promising method for tuning a mode was implemented
during the test by displaying on the CRT, a scatter diagram in the
complex plane, of selected response accelerometers obtained at various
driving frequencies. A tuned mode was identified as the frequency
producing the minimum scatter or alternately the maximum correlation. A-3 _

1.0 INTRODUCTION Canyon, Site B, Test Facility in June-
July 1985. General Dynamics Corporation

The Centaur G Prime is a 25,000 kg upper (GDC) conducted the test under contract
stage that, prior to the Challenger to NASA for the NASA Lewis Research
accident, was to be used with the STS Center. The Jet Propulsion Laboratory
Shuttle as a high energy interplanetary (JPL) was under contract to support the
launch -hicle for Galileo, Ulysses and NASA Lewis Research Center and Structural
Magellan. Figure 1 shows the Centaur G Dynamics Research Corporation (SDRC) was 2..
Prime in orbit carrying the Galileo under contract to support GDC.
spacecraft after separation from the STS.

The primary purpose of the test was to-*
The zodal test was conducted on the obtain modal data in the form of resonant .
Centaur vehicle, as a part of the series frequencies and mode shapes, in order to 10
of structural tests that ae required for validate and/or update the Centaur finite
the validation of the vehicle for STS elenent model. This model is used in
flight. The test was performed at the conjunction with the STS and ?ayload
General Dypnamics Corporation Sycamore models for the pre-flight verification
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F'2,

attachnent into the STS cargo Bay ant,
sirulated various u_ n package
=asses. Ficure 2 shows a schezatic
representation of the Cargo Elezent in
the test tower and rig- 3 is a n-hotogqran>h
of the actual test setup. The =ass .-.
distribution of the --ajzr co--pone.ts of
the test article is shown in Table 1.

in all cases the 1.-2 tank was left ezntvy
The LOX tank was r n -i ther f-l of water
or e-oty. OnWy the case of A e LOX tank
full of water is reno.ted here.

Figre I. centaur H .t_

STS/Centaur/Payload siste~s. As a S-LS !L_4; =
requirenent, all =odels use in "he pre- ii|.; _
fliht veri4fication a.-Iysis rust be ;--

- 4l . C-1

Validated by test. E A - t .2
o;4re VA !i. -I -I MA

4.4,

structure as it ould be in the uttle_ .,
coin load aunal sonfi teatior. e p
obecti/e of this first phase was to 'U'4.

obtain as aentio d abve, fused - the re- *.<

fst veifadiatysis at STS Liftoff a !- -
Landia. -e scond --zse of te test tsst.
the test ofs e Centaur alone Figure 2- S c!he--t-c C.nf iguration for-

i--ern its sum-rt fo r which the ao e en t Test.

the prinar,- objective was to obtainaalysis of the Centaur vehicle in orbit--

after seinarati n fro= n a T--- ST:.

one Cargo oieent ftest was in turn I 4 -
divided into two parts, a -ada test with

tru~nnions free to slide, labelled .--"unlocked" a a sec odas of th test w a

t-rj.-ilor-s "Iocked" to prevent sli di., and .7eli-irte s o in the r Cilse In addition, F 2 - i

the same setup etalso ased a twan
test daa frhe Carfgo ith ontro
tnnnior s free to s:de (unlecked) wi. b

Sbe reorted here retai's €c. the entire57--

[ series of tests are renc._ed in R-efs.

2.0 T-FST A..'--1CiZ, --The Cargo Elenent test arsicie o"tu ste

of the Centaur G prit tank asseb ith
tr rines fre he Atlas /Centau

ockp, he Galileo rigid si=alator & -rim
tounted on its actual light interface
adapter, the Centaur depasent adapter,
the Cen-aur Smup pot So-uscure asseably

(CSS) the flight tre atches for the Figure 3- Cargo Vee .r the Test Tower .4%
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Table 1- Xass of Major Con-ponents of theZPRMY
Cargo Elenent (;n7 kg)

Dr T77ank Asser-bly (W-2 and LOX) 1652I
Centaur Fix-3 Adapter 250

*Deploynment Adapter Assenrbly 335
* Centaur Support Structure (CSS) 10681

Siinulated Rigid Galileo 2388
Galileo/Centaur Adanter 45
Cl Engine 145

C2Engine 14l51 '
Other (nocked upn equipment) 2226 1 vi.. m
Fluid in LH2 tank (erpty) 0.W3

in LOX tank (water) 14742j

Total 229961 WO

TO TOR

3.0 TES CONFIGTRATIC-Is

3.1 Description Figure 5. T~pical Trunnion and Latch

The Centaur Cargo Ele=ent is attached in
the Shuttle Bay at eight (S) points by ca--ej fron one substucture to a.nother-
trunnions and latches for a total of ten ' onaisbtent
(10) restrained degrees of freedom_ thruhthes bounariestezteen ofthe -
Figure 4 shows a schenatic representation sbucriesutb onaacerozten of~r t-
of the ov.erall attachnent. Slidin-g is z-re rs eoeo h r=r
allowed in the unrestrained degrees of objectives of the test. The philosophy

= freed=-. Fiue5sow 7i followed for this test, as for any otterA
attachnent Doint where the trunnilon can payload, was that the nodes were to be

slid thoug th lach i th trirnon easured with flight-type trunnions and
axial direon ad the latch/ tetrunnion l~tches in place, in their near
assenhly can slide as a whole in a di- .ntoa odtin -. cryn

significant :'oads as representatlve as
recton expndiularto he runionpossible of the actual flight
axis.envi. -nent_

3.2 Tst Pilosohy Tis philosophy has raised questions fron

Loads for STS payloads are, in general. 5one segment of the structural co=nity
critical for Liftoff and Landing- models because the trunhiior.f latch asseshblies are
of the entire SIS systen used to estinate inhere.-tly non-linear. This difficulty is
loads are assenbled nathmetlcally by a~knoiwledged here, howe;ver the abcove
cotibininrg =nodels of subsyste=ns that are philosophy was retained fo: this test as
restrained at the conon boundaries th1n.iinth otreibedt
between subsystems (Craig-Bam-pton within a reasonable cost and schedule. it U
fornat). in the case of the Centaur cargo wafotlte htsficetyhg
BE1erent, thes restrained degrees of anoplitudes attained during the test would
freedor are those of the ST/Centaur exercise the 2 sliding" of the trunanions,
boundaries of Fig. 4. Since loads are minimize backlash effect and yield a

characterization of the non-linear
latcb/trunnion asseublies by an

R_ erivennleaid lare amlitude

R the latches fro-- the rest of the
otheviselinear" structure, to run

R seoarate tests, one on the latches and
tr-unnions to characterize their non-

*linearities, and one linear test on the
~ rest of the structure, although nore

,X 'j~~'satisfying =atheatically, was not
retained. This alternate =method was 4

Oprv VO CSS 4y judged significantly more costly and with
4 no assurance of a better reliability

since non-linear characterization and
non-linear analysis of structures remain

I-igure 4. -trunnion Loac Bearing Degrees difficult problens w,,ith low probability
of Freedom and Nut!bering for accurate answers.
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Further, the philosophy presented here is R6Z), aft trunnions (R7Z, R8Z) and its
that of not using the test modes for keel (R4Y) (see Fig. 4). The weight of
loads analysis but instead, it is that of the test article (1.0 g loading) was
using the finite element NASTRAN model reacted as in flight, only by the two CSS
that has been properly updated after the forward trunnions in the vertical direc-
test in such a way that each measured tion, reactions R5X and R6X of Fig. 4.
mode obtained at the highest level of
pEtinA is reasonably matched by the c) another seismic mass of 46,000 kg was
corresponding mode of the NASTRAN model. floated on air bags about 10 meters above
Any non-linearity shown in the test is the ground floor near the Centaur forward
equivalently linearized, for high adapter to react the Centaur forward
amplitudes, by the updated model. In so trunnions (RIZ, R2Z) and forward keel
doing the lack of good orthogonality of (R3Y). This seismic mass is labelled
the measured modes because of non- "upper rcaction frame" (see Fig. 7). The
linearity is not a primary requirement mass of the upper reaction frame was

since these modes are not used for a determined analytically before the test
loads analysis. The loads analysis as the mass necessary for a "near"
instead, is done with a set of analytical restraint of each of the above trunnions ..
modes that are orthogonal. Moreover the and keel. 4
use of the NASTRAN model also allows the
detailed calculation of loads anywhere in d) actual flight-type latches and rails,
the payload while the limited number of lubricated as for flight, were used to
measured modes would not. tie each trunnion and keel to the

stanchions or to the upper reaction
frame.

3.3 Implementation

To implement the philosophy of testing 4.0 SHAKERS AND METHOD OF TESTING
under representative flight conditions
the following was done: Three (3) electromechanical shakers of

approximately 4500 Newtons capability
a) the Cargo Element was tested upright each were available for the ;est (Fig.
an a tower creating a 1 g load along the 8). Only one (1) of these shakers was
longitudinal axis of the Centaur, the X used at any one time to isolate the
axis. This is the configuration on the modes.
launching pad. During launch the quasi-
static load varies from the 1.0 g at rest Because of the high level of response
to 1.6 g's at full thrust of the STS desired to overcome the backlash effect
engines. This last load was not simulated and induce slipping in the trunnions, the
but only the 1.0 g was. Sine Dwell method was retained as the

primary method of testing to measure the
b) three (3) rigid stanchions, typically modes. Multiple point Random excitation
shown in Fig. 6, were erected on and tied method was also used for exploratory
to the ground floor on the seismic mass identification of the modes at the low
of the test tower, to rupport the CSS at level of response. Also a limited amount
its forward trunnions (RSX, R5Z, R6X, of testing was done using the Sine Sweep

method, broad band as well as narrow
band. only the Sine Dwell results are
reported here.

Figure 6. Typical Support Stanchion Figure 7. Upper Reaction Frame
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5.0 EUIPMENT

Figure 9 shows a simplified diagram of
the electromechanical and electronics

$ setup that was implemented for the test.
In this setup, the heart of the system
was made of:

a. the GENRAD 2515 analyzer for limited
data acquisition and on site data
processing,

b. the SRDC "MODAL PLUS" software for
supporting the GENRAD 2515,

c. the CYBER Data Acquisition System
for large volume data acquisition,

d. the VAX computer, not located at the
test site, for large volume post
processing of the data.

Other major components were:

Unholtz-Dickie Power Amplifiers and
Shakers (2) (4450 Newtons)

Ling Power Amplifier and MB Shaker
(1) (5340 Newtons)

Accelerometers (131)

Figure 8. Electomechanical Shaker Loads Cells (3).

.CYBER DIGITAL DATA ACQUISITION SYSTEM

I DATA REMOVABLEMATRI CONTROL DIGITAL
SYSTEM MAGTAPE

ISCOPES. [-IE-
'F ES- SDRC

FIXED DATA

Z DREDUCTION
T RAG E  IODES

0 ETi; N GENRAD FRF & TIME HISTORIES REMOVABLE
ANALYZER.- DIGITAL
25HARD DISK

SHUTTLE/CENTAUR ''
VECHICLE EXCITATION SCA" -ER PLOTS

CONTROL jUSED FOR TUNING Z,.
SYSTEM

Figure 9. Instrumentation Block Diagram "
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In addition a variety of more standard accelerometers are expected "ideally" to
equipment such as oscillator, be all in phase, the scatter will tend to
Co-Quad analyzer, Phase meter, Counters, disappear showing the displayed points
Oscilloscopes, Tape Recorders, gathering in a preferential direction, a
Oscillographs, etc... were also used in regression line (least square best fit),
support of the main components. indicating the correlation of phase U

between the responses of all the
accelerometers. we note that all the

6.0 TUNING OF A MODE FOR SINE DWELL displayed points would align on a single
straight line only for a perfectly linear

6.1 Tuning by Scatter Diagram system excited perfectly to bring out
only one mode eliminating all the others.

Real and imaginary components of the

complex response of a structure excited The observation that the complex
by & sinusoidal force have becn used in responses in the complex plane tend to
one way or another for many years in gather in a preferential direction,
modal testing. The advent of Computer suggests a rather convenibnt way to look
Aided Testing has allowed a systematic for a resonance. One systematically
use of the complex response in the dwells at discrete frequencies and makes
complex plane as a tuning aid to isolate a diagram of the complex response points
a mode. This was reported in Refs. (3,4] for each dwell, creating a family of
for the Galileo spacecraft modal test and diagrams. The diagram showing the minimum
also in Ref. (5]. scatter or alternately the largest

correlation, will indicate a resonance.
A practical use of the technique was done As an additional aid, this scatter can be
for the Centaur modal test. For a given quantified by computing some statistical
shaker location, the power amplifier was quantity indicative of the deviation from
driven by a sinewave at a chosen the best fit.
frequency f near the resonant frequency
of the mode to be measured. The time Figure 10 shows a typical scatter diagram
response of 15 selected accelerometers for 15 selected accelerometers which was V
were recorded and analyzed in the GENRAD retained for a tuned mode obtained during
2515, to extract the real and imaginary the test. The MIF is the mcdal indicator
parts (FRF) of the complex response at function defined below which is a way to
the fundamental driving frequency f. measure the maximum correlation between
Displaying on the CRT (Fig. 10), the the points. We have,
points which components are the real and
imaginary parts of the complex MIF = 1.0 - SDM/SMM (1) N
responses, produces a diagram that in
general, tends to be "scattered" over the where
whole plane when the exciting frequency
falls outside a resonance. Since at SDM Z(D(I)*M(I))
resonance all the responses from the S.SMM= (M (I)*M (1))

D(I) = PL (Fig. 11) is the distance
*4 from the ith point to the -A

BEST FIT best fit line,+ M(I) OP (Fig. 11) is the vector
magnitude of the ith point

in the complex plane.

A MIF of 1.0 would indicate a perfectly
tuned mode. The plotting of the scatter
diagram and the MIF calculation were

- -____programmed by SDRC in the MODAL PLUS
-- software and added to the GENRAD 2515 for

- .... the test. MIF values varying from .83 to1 .96 were achieved during the test. ThisI method using the scatter diagram and
looking for maximum correlation to tune a
mode was found to be very effective andV 'practical.

Figure 11 shows a good estimate of the

, ,physical mode shape MS(I) by projecting
all the measured points in the complex
plane on the best fit line making anFigure 10. Typical Scatter Diagram angle A with the imaginary axis, Ref.(4].
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MS(I) = Y(I)*COS(A) - X(I)*SIN(A) (2) LH2 and LOX tanks and modified to reflect
the differences between the flight struc-
ture and the test structure (Ref. [1))

6.2 Generalized Force as a Tuning Aid K
b) the simulated rigid Galileo and its

For the Centaur modal test, the calcu- adapter
lation of the generalized force, as a
generalization of the method in Ref.[4], c) the support stanchions
was also added to the diagram in an
attempt to use the property that, at d) the upper reaction frame
resonance, the generalized force vector
must be perpendicular to the best fit e) the fuel model for the LOX tank for
line. However, this capability did not the test condition labelled "full".
prove to be very useful since it became
obvious during the course of the test Modes were calculated for an "empty" and
that, at least, the local elastic "full" LOX tank and with 3 kinds of
deformations in the vicinity of the boundary conditions that differ from one
shaKer attachment prevented a good phase another by the support trunnion degrees
measurement of the response at that of freedom allowed to react load to the
point. The result of this poor phase rest of the support, namely:
definition for the point of application
of the force did not allow a precise
calculation of ths generalized force case 1. CSS forward trunnions R5 and R6
(force times acceleration), making the do not slip (in Y)
generalized force aata not directly
usable except for the cases of attachment case 2. all trunnions slip as in Fig. 4
of the shaker on, locally, a very rigid
part of the Centaur structure. case 3. all trunnions locked.

6.3 Lamping Case I, with the LOX tank full, was
judged the closest to the test results.The damping of each measured mode was

determined by the log decrement from the
decay of selected accelerometers obtained 7.2 Target Modes
on a strip chart by shuttini off the
force input. The modal damping shown in The target modes are the modes of
Table 2 is an average calculated from significance that control the loads
several accelerometer mtasurements. anflyttr for the Centaur and the Orbiter

i the 'cinity (bridge fittings) of theOcbitet. C.ntaur interfaces. These target
7.0 PRE-TEST ANALYSIS modes wa:e siected from the pre-test

Analysis done on the TAM, prior to the
7.1 Tost Analysis Model rAM) start cx the test. The criteria for this

sfie..,r) n [Ref. 4] was the effective mass
A NASTRAN analytical model of the test of -,n mode. (Appendix A) calculated from
article was prepared before The test. the FuA-test analysis. The effective mass V
This model comprised: of tie payload iii the STS Orbiter

(Cxntaur/Calileo test article here) for a
a) the Centaur G Prime Liftoff loads giv _pn mode of the payload, is the mass
model (5.0) without fluid in any of tb tLat the STS Orbiter will "feel" through

the trunnions and keels at the
Centaur/Orbiter interface. Payload modes

IMAGINARY with large effective mass will
intuitively influence the Orbiter much

BESTFIT more than those with a small effective
LINE mass. Six target modes varying in

P frequency from 4.76 to 16.87 Hz were
+identified prior to the test, they are

shown with corresponding resonant
frequencies and effective masses as part '

A of Table 3 under the TAM column.

8.0 TEST RESULTS "V"

8.1 Non-linearity

All modes were measured for at least 'A
Figure 11. Mode Shape From Tuned Scatter three (3) levels of excitation. The

Diagram target modes were all measured.
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T1!he test showed the existence of a rather * -RANDOM-
strong non-linearity of the resonant SINEOWEL-
frequency and damping for most modes with -

respect to the level of the shaker force.
The observed non-linearity is summarized
in Table 2, the acceleration is that of 

9 A

the Galileo simulated payload. The data 2;
is also plotted in Fig. 12. It can be 8
seen that the resonant frequencies tend
to become constant for large forces. Only FWD PITCH AF YAW
the modes obtained with the larQest foce .
of excitation were retained for
subsequent analyses as being the most 6-
representative of the structure in
flight. 5 FWD YAWIROLL

SHAKER FORCE4 I 

Table 2. Variation of Major Resonant 0 200 400 600 80 1000 8S
Frequencies and Dampings I i I
with Shaker Force 0 1 200D 300D 4000 NEWTONS
(full, unlocked)

Figure 12. Variation of Resonant
Frequencies with Shaker ForceMODE FORCE FREQ ACC DAMPING

(N) (Hz) (G)
_with comes very close to the total

physical mass of the Cargo Element. The
FWD YAW 547 5.50 - - first :wo rows of Table 3 correspond to

885 5.27 - - the slosh modes which were not attempted
1290 5.08 - - to be measured or analyzed in the pre-
1721 4.73 - - test model. However, their effective mass
2224 4.60 .08 - was estimated. In the pre-test TAM the
3559 4.41 .14 .090 fluid was assumed to be frozen.

FWb PITCH 1134 7.64 .34 .034 The discrepancy of the pre-test model was
2282 7.97 .58 .035 subsequently corrected and the corrected
2318 7.87 .79 .035 model (post test TAM) used to create the

loads model for the pre-flight
AFT YAW 1112 8.38 - .031 verification analysis. The corrections

2224 8.00 .24 .056 will not be discussed here, they have
3599 7.66 .42 .061 been reported in Refs. (1,6]. The loads

model was derived from the post test TAM,
AXIAL 2224 8.42 .16 .028 it reflects all the differences from r-he

3336 8.27 .27 .026 test article to the flight hardware,
4448 8.22 .32 .027 including the proper amount of fluid in

both tanks, LOX and LH2.
AFT PITCH 2269 9.25 .50 .013

3514 9.19 .66 .016 8.3 Mass Matrix [m] for Measured Degrees
of Freedom

In Table 3 the mass matrix (m) used for
'he calculation of the effective mass

8.2 Measured Modes and Effective Masses (Appondix A) was assembled from
inspection of the test article on site

Table 3 shows the correspondence of the and using the masses reported in Table 1.
effective mass (Appendix Al) of each This mass matrix [m] describes the detail
measured mode to that of the pre-test distribution of the mass assigned to each
analysis (TAM) for the case of che full measured degree of freedom (110
LOX tank, retaining only the modes measurements) on the Centaur and on the
obtained with the largest force of CSS (Cargo Element), excluding all the
excitation. This table shows that a measurements made on latches and upper
discrepancy existed between the pre-test reaction frame. This mass matrix was
Model and test results as far as judged to be more representative of the
frequency and effective mass are test article than the mass matrix
concerned. Table 3 also shows that all obtained from a Guyan reduction of the
the modes with large effective masses pre-test NASTRAN model [Ref. 4]. This is
were measured as evidenced by the sum of because discrepancies in the oriinal
the effective mass of all measured modes pre-test NASTRAN model are foldea from
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Table 3. Comparison of Target Modes for Test and pretest Analysis

MEASURED PRE-TEST TAM

FR2Q AXIAL YAW PITCH FREQ AXIAL YAW PITCH
(Hz) (kg) (kg) (kg) (Hz) (kg) (kg) (kg)

0 2270 0 ....
- 0 0 2270 - - - -
4.41 3 16960 20 4.76 0 18667 0
7.66 0 588 19 7.81 0 964 0
7.87 0 6 15530 7.15 5310 0 13355 1
8.12 21928 1 244 5.85 16882 0 4118
9.19 580 0 6370 10.97 22 0 2948
20.25 2 480 0 16.87 0 1094 0

T' AL 22513 20305 24453 22214 20725 20421
EFF. k

TOTAL 22996 22996 22996 22996 22996 22996
Pays.

RATIO .98 .88 1.06 .97 .90 .89

the very large (approximatel.y 20,000) from the best fit in a direction
original degrees of freedom to the perpendicular to it. It should be
reduced mass matrix needed for the normalized to the root mean square value
measured degrees of freedom (110). In of the mode shape MS(I) - OL (Fig. 11)
other words the pre--test NASTRAN reduced i.e. along the best fit line calculated
mass matrix contains errors that would be over all the points (all the degrees of N
eliminated only when the original NASTRAN freedom of the mode). We will call
model would have been appropriately "scatter" twice the normalized deviation:
corrected for stiffness to match the test
results. SCTR = 2* SDDISM (3)

8.4 Orthogonality where ir.
SDD = V(D(I)*D(I))

Although orthogonality is not a very good A"
criteria for goodness of the test when a SMN = E(MS(I)*MS(I))
structure shows non-linqarities [Ref. 4]
it was nevertheless calculated using the The "correlation "is defined by:
same matrix (a] in the equation of
Appendix A as used for the effective CORR = - 1.0 - SCTR*SCTR (4)
mass. It is shown in Table 4.

The scatter can also be assessed by an
8.5 Goodness of Test Data angle:

The scatter diagram for the 110 ANG = ASIN(SCTR) (5)
accelerometer measurements of a tuned
mode can be used to judge the goodness of By taking twice the deviation for the
the measurements by calculating the scatter we can say that approximately 95% .,

correlation derived from the least square of the measurements will have a phase
fit of the data corresponding to the 110 angle deviating from that of the best fit
points of the scatter diagram. line by less than ANG.

The least square calculation for the best The correlation as just defined above
fit minimizes the mean square value SDD is derived from statistical concepts and
of the perpendicular distance D(I) = LP is similar to the nodal indicator
(Fig. 11) between all the points and the function MIF of section 6.1. It could be
best fit line. The square root of SDD is used as an alternate for the tuning of a .*.
a statistical measure of the deviation mode.
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Table 4. Orthogonality of measured modes 9.0 CONCLUSION

The Centaur G Prime modal test resulted
MO R 2 -4in sets of modes (frequencies, mode

(Hz)D shapes and damping) with an accuracy

I similar to or better than that normally

1 4.41 1.00 .13 .05 -. 02 -. 03 -. 04 .01 obtained from the modal testing of linear

2 7.66 .13 1.00 -. 01 -. 02 .06 .12 -. 01 structures with no backlash and small
3 7.87 .05 -.01 1.00 -.05 -.16 .00 -. 04 damping. In other words, performing the
4 8.22 -. 02 -. 02 -. 05 1.00 .00 .01 .05 test at high level greatly minimized the N
5 9.19 -. 03 .06 -. 16 .00 1.00 -. 01 -. 02 backlash effect and provided a valid,
6 20.25 -. 04 .12 .00 .01 -. 01 1.00 .00 simple linearization of the trunnion

.01 -. 01-.04 .05 -. 02 .00 1.00 friction problem for the Centaur in the
Shuttle Cargo Bay. All the most important
modes (target modes) were measured and
provided the data base for updating the

It should be noted that MIF was finite element model for the pre-flight
calculated on site but only for a set of verification loads analysis.
15 selected points while CORR was
calculated as a postprocessing step but
for all the 110 measured degrees of
freedom. It is used here for an overall ACKNOWLEDGEMENTS
assessment of the goodness of the test The work described in this paper wasfrom a statistical view point. Table 5 carried out in part by the Jet Propulsion
shows the correlation for all measured carr out io a by t e opmodes for the case of the full LOX tank, Laboratory, California Institute of
again the modes are those obtained with Technolog, under contract with the
the largest force of excitation. It is National Aeronautics and Space
significant that this correlation is Administration, in direct support of the

totally independent of any analysis on NASA Lewis Research Center.
the structure with respect to stiffness
and mass distribution. Therefore, it is
truly an assessment of the quality of the
measurements alone. 1. Cutler,A., "Centaur G Prime Modal

AS for the MIF, a correlation of 1.0 Survey, Final Report", General
would mean that all the points fall on a Dynamics Space System Division, San
straight line i.e. are in phase Diego, CA., Rep. No.GDSS-SSC-86-009,
indicating a perfectly tuned mode. The to be published, 1986.
value of the actual correlation for the 2
test results varies from .853 to .997 2. Page,D., "Design Evaluation Test

indicating a very acceptable goodness of No.65A7758 Test Report for

the test. Shuttle/Centaur G Prime Modal Test
P/N 65-07701-1",General Dynamics MI

Table 5 also shows the values of MIF that Convair Div., Vols.l-5, May 7, 1986.
are similar to those of the correlation.

3. Stroud,R., "The modal Survey of the
8.6 Mode Shapes Galileo Spacecraft", Sound and

Vibration, Vol 18/Number 4, Ap. 1984.
Appendix B contains plots of selected
significant measured modes. 4. Trubert,M., "Galileo System Modal

Test", Vol. 1, Jet Propulsion
Laboratory, California Institute of .

Table 5. Goodness of Test Data Technology, Report JPL D-950, H
(full case) January 31, 1984, (Internal Document).

5. Hunt,D., Matthews,J., Williams,R.,1 "An Automated Tuning and Data
MODE FREQ ANG CORR MIF Collection System for Sine Dwell Modal I

(HZ) (DEG) Testing", Paper 84-1058, Proceedings
of the 24th AIAA/ASME/ASCE/AHS

I Structures, Structural Dynamics and
1 4.41 10.3 .984 .963 Materials Conference, Part 2,
2 7.66 31.4 .853 .895 Palm Spring, CA, May 1984.
3 7.87 10.8 .982 .950
4 8.22 4.2 .997 .899 6. Chen,J., Rose,T., Trubert,M.,
5 9.19 11.7 .979 .894 Wada,B., Shaker,F., "Modal
6 20.25 26.3 .897 .828 Test/Analysis Correlation for Centaur
7 27.88 13.5 .972 .929 G Prime Launch Vehicle", Proceedings

___ __of the 26th AIAA/ASME/ASCE/AHS
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Structures, Structural Dynamics and Then the effective mass (6 x 6) for the tV
Materials Conference, Part 2, nth mode is
pp 621-633, San Antonio, TX,
May 19-21, 1986. [MEFFn] (MREn)<MERn>

where <MERn> is the transpose of (MREn).
APPENDIX A - MATHEMATICAL DEFINITIONS

Only the three translation degrees of
Al. EFFECTIVE MASS freedom of the effective mass have been .

retained here.

Call:
d the number of measured

degrees of freedom A2. ORTHOGONALITY N.
(d = 110)

[m] the mass matrix (diagonal)(in] ithe mas m i (Call [PHIE] the matrix for all the
(110 x 110) '-

(PHIEn) the nth elastic mode shape measured modes (PHIEn), n = 1 .... 7,
(1 x 110)

[PHIR] the 6 rigid body modes [PHIE] = [PHIE1,PHIE2,... ,PHIE7]
(6 x 110). the orthogoi.ality matrix is

The rigid elastic coupling column
(size 6) for the nth mode is [ORTH] = [PHIE][m](PHIE]T

(MREn) = [PHIR][m](PHIEn) where the superscript T means transpose.

i

APPENDIX B - SELECTED MEASURED MODE SHAPES

fof

V X

-. -.OQN.

Figure Bl. FWD YAW/ROLL Mode at 4.41 Hz 4- '
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